Abstract:We propose to personalize a human pose estimator given a set of test images of a person without using any manual annotations. While there is a significant advancement in human pose estimation, it is still very challenging for a model to generalize to different unknown environments and unseen persons. Instead of using a fixed model for every test case, we adapt our pose estimator during test time to exploit person-specific information. We first train our model on diverse data with both a supervised and a self-supervised pose estimation objectives jointly. We use a Transformer model to build a transformation between the self-supervised keypoints and the supervised keypoints. During test time, we personalize and adapt our model by fine-tuning with the self-supervised objective. The pose is then improved by transforming the updated self-supervised keypoints. We experiment with multiple datasets and show significant improvements on pose estimations with our self-supervised personalization.
Abstract:In this paper we propose a new intermediate supervision method, named LabelEnc, to boost the training of object detection systems. The key idea is to introduce a novel label encoding function, mapping the ground-truth labels into latent embedding, acting as an auxiliary intermediate supervision to the detection backbone during training. Our approach mainly involves a two-step training procedure. First, we optimize the label encoding function via an AutoEncoder defined in the label space, approximating the "desired" intermediate representations for the target object detector. Second, taking advantage of the learned label encoding function, we introduce a new auxiliary loss attached to the detection backbones, thus benefiting the performance of the derived detector. Experiments show our method improves a variety of detection systems by around 2% on COCO dataset, no matter one-stage or two-stage frameworks. Moreover, the auxiliary structures only exist during training, i.e. it is completely cost-free in inference time.