Abstract:Deepfake facial manipulation has garnered significant public attention due to its impacts on enhancing human experiences and posing privacy threats. Despite numerous passive algorithms that have been attempted to thwart malicious Deepfake attacks, they mostly struggle with the generalizability challenge when confronted with hyper-realistic synthetic facial images. To tackle the problem, this paper proposes a proactive Deepfake detection approach by introducing a novel training-free landmark perceptual watermark, LampMark for short. We first analyze the structure-sensitive characteristics of Deepfake manipulations and devise a secure and confidential transformation pipeline from the structural representations, i.e. facial landmarks, to binary landmark perceptual watermarks. Subsequently, we present an end-to-end watermarking framework that imperceptibly and robustly embeds and extracts watermarks concerning the images to be protected. Relying on promising watermark recovery accuracies, Deepfake detection is accomplished by assessing the consistency between the content-matched landmark perceptual watermark and the robustly recovered watermark of the suspect image. Experimental results demonstrate the superior performance of our approach in watermark recovery and Deepfake detection compared to state-of-the-art methods across in-dataset, cross-dataset, and cross-manipulation scenarios.
Abstract:Notwithstanding offering convenience and entertainment to society, Deepfake face swapping has caused critical privacy issues with the rapid development of deep generative models. Due to imperceptible artifacts in high-quality synthetic images, passive detection models against face swapping in recent years usually suffer performance damping regarding the generalizability issue. Therefore, several studies have been attempted to proactively protect the original images against malicious manipulations by inserting invisible signals in advance. However, the existing proactive defense approaches demonstrate unsatisfactory results with respect to visual quality, detection accuracy, and source tracing ability. In this study, we propose the first robust identity perceptual watermarking framework that concurrently performs detection and source tracing against Deepfake face swapping proactively. We assign identity semantics regarding the image contents to the watermarks and devise an unpredictable and unreversible chaotic encryption system to ensure watermark confidentiality. The watermarks are encoded and recovered by jointly training an encoder-decoder framework along with adversarial image manipulations. Extensive experiments demonstrate state-of-the-art performance against Deepfake face swapping under both cross-dataset and cross-manipulation settings.