Abstract:Artificial intelligence generated content (AIGC) technologies, with a predominance of large language models (LLMs), have demonstrated remarkable performance improvements in various applications, which have attracted great interests from both academia and industry. Although some noteworthy advancements have been made in this area, a comprehensive exploration of the intricate relationship between AIGC and communication networks remains relatively limited. To address this issue, this paper conducts an exhaustive survey from dual standpoints: firstly, it scrutinizes the integration of LLMs and AIGC technologies within the domain of communication networks; secondly, it investigates how the communication networks can further bolster the capabilities of LLMs and AIGC. Additionally, this research explores the promising applications along with the challenges encountered during the incorporation of these AI technologies into communication networks. Through these detailed analyses, our work aims to deepen the understanding of how LLMs and AIGC can synergize with and enhance the development of advanced intelligent communication networks, contributing to a more profound comprehension of next-generation intelligent communication networks.
Abstract:Image-text retrieval (ITR) is a challenging task in the field of multimodal information processing due to the semantic gap between different modalities. In recent years, researchers have made great progress in exploring the accurate alignment between image and text. However, existing works mainly focus on the fine-grained alignment between image regions and sentence fragments, which ignores the guiding significance of context background information. Actually, integrating the local fine-grained information and global context background information can provide more semantic clues for retrieval. In this paper, we propose a novel Hierarchical Graph Alignment Network (HGAN) for image-text retrieval. First, to capture the comprehensive multimodal features, we construct the feature graphs for the image and text modality respectively. Then, a multi-granularity shared space is established with a designed Multi-granularity Feature Aggregation and Rearrangement (MFAR) module, which enhances the semantic corresponding relations between the local and global information, and obtains more accurate feature representations for the image and text modalities. Finally, the ultimate image and text features are further refined through three-level similarity functions to achieve the hierarchical alignment. To justify the proposed model, we perform extensive experiments on MS-COCO and Flickr30K datasets. Experimental results show that the proposed HGAN outperforms the state-of-the-art methods on both datasets, which demonstrates the effectiveness and superiority of our model.