Abstract:In shilling attacks, an adversarial party injects a few fake user profiles into a Recommender System (RS) so that the target item can be promoted or demoted. Although much effort has been devoted to developing shilling attack methods, we find that existing approaches are still far from practical. In this paper, we analyze the properties a practical shilling attack method should have and propose a new concept of Cross-system Attack. With the idea of Cross-system Attack, we design a Practical Cross-system Shilling Attack (PC-Attack) framework that requires little information about the victim RS model and the target RS data for conducting attacks. PC-Attack is trained to capture graph topology knowledge from public RS data in a self-supervised manner. Then, it is fine-tuned on a small portion of target data that is easy to access to construct fake profiles. Extensive experiments have demonstrated the superiority of PC-Attack over state-of-the-art baselines. Our implementation of PC-Attack is available at https://github.com/KDEGroup/PC-Attack.
Abstract:Due to the pivotal role of Recommender Systems (RS) in guiding customers towards the purchase, there is a natural motivation for unscrupulous parties to spoof RS for profits. In this paper, we study Shilling Attack where an adversarial party injects a number of fake user profiles for improper purposes. Conventional Shilling Attack approaches lack attack transferability (i.e., attacks are not effective on some victim RS models) and/or attack invisibility (i.e., injected profiles can be easily detected). To overcome these issues, we present Leg-UP, a novel attack model based on the Generative Adversarial Network. Leg-UP learns user behavior patterns from real users in the sampled ``templates'' and constructs fake user profiles. To simulate real users, the generator in Leg-UP directly outputs discrete ratings. To enhance attack transferability, the parameters of the generator are optimized by maximizing the attack performance on a surrogate RS model. To improve attack invisibility, Leg-UP adopts a discriminator to guide the generator to generate undetectable fake user profiles. Experiments on benchmarks have shown that Leg-UP exceeds state-of-the-art Shilling Attack methods on a wide range of victim RS models. The source code of our work is available at: https://github.com/XMUDM/ShillingAttack.