https://github.com/XMUDM/ShillingAttack.
Due to the pivotal role of Recommender Systems (RS) in guiding customers towards the purchase, there is a natural motivation for unscrupulous parties to spoof RS for profits. In this paper, we study Shilling Attack where an adversarial party injects a number of fake user profiles for improper purposes. Conventional Shilling Attack approaches lack attack transferability (i.e., attacks are not effective on some victim RS models) and/or attack invisibility (i.e., injected profiles can be easily detected). To overcome these issues, we present Leg-UP, a novel attack model based on the Generative Adversarial Network. Leg-UP learns user behavior patterns from real users in the sampled ``templates'' and constructs fake user profiles. To simulate real users, the generator in Leg-UP directly outputs discrete ratings. To enhance attack transferability, the parameters of the generator are optimized by maximizing the attack performance on a surrogate RS model. To improve attack invisibility, Leg-UP adopts a discriminator to guide the generator to generate undetectable fake user profiles. Experiments on benchmarks have shown that Leg-UP exceeds state-of-the-art Shilling Attack methods on a wide range of victim RS models. The source code of our work is available at: