Abstract:Accurate prediction of wind power is essential for the grid integration of this intermittent renewable source and aiding grid planners in forecasting available wind capacity. Spatial differences lead to discrepancies in climatological data distributions between two geographically dispersed regions, consequently making the prediction task more difficult. Thus, a prediction model that learns from the data of a particular climatic region can suffer from being less robust. A deep neural network (DNN) based domain adaptive approach is proposed to counter this drawback. Effective weather features from a large set of weather parameters are selected using a random forest approach. A pre-trained model from the source domain is utilized to perform the prediction task, assuming no source data is available during target domain prediction. The weights of only the last few layers of the DNN model are updated throughout the task, keeping the rest of the network unchanged, making the model faster compared to the traditional approaches. The proposed approach demonstrates higher accuracy ranging from 6.14% to even 28.44% compared to the traditional non-adaptive method.
Abstract:The prediction of solar power generation is a challenging task due to its dependence on climatic characteristics that exhibit spatial and temporal variability. The performance of a prediction model may vary across different places due to changes in data distribution, resulting in a model that works well in one region but not in others. Furthermore, as a consequence of global warming, there is a notable acceleration in the alteration of weather patterns on an annual basis. This phenomenon introduces the potential for diminished efficacy of existing models, even within the same geographical region, as time progresses. In this paper, a domain adaptive deep learning-based framework is proposed to estimate solar power generation using weather features that can solve the aforementioned challenges. A feed-forward deep convolutional network model is trained for a known location dataset in a supervised manner and utilized to predict the solar power of an unknown location later. This adaptive data-driven approach exhibits notable advantages in terms of computing speed, storage efficiency, and its ability to improve outcomes in scenarios where state-of-the-art non-adaptive methods fail. Our method has shown an improvement of $10.47 \%$, $7.44 \%$, $5.11\%$ in solar power prediction accuracy compared to best performing non-adaptive method for California (CA), Florida (FL) and New York (NY), respectively.
Abstract:Rain precipitation prediction is a challenging task as it depends on weather and meteorological features which vary from location to location. As a result, a prediction model that performs well at one location does not perform well at other locations due to the distribution shifts. In addition, due to global warming, the weather patterns are changing very rapidly year by year which creates the possibility of ineffectiveness of those models even at the same location as time passes. In our work, we have proposed an adaptive deep learning-based framework in order to provide a solution to the aforementioned challenges. Our method can generalize the model for the prediction of precipitation for any location where the methods without adaptation fail. Our method has shown 43.51%, 5.09%, and 38.62% improvement after adaptation using a deep neural network for predicting the precipitation of Paris, Los Angeles, and Tokyo, respectively.
Abstract:Gaining a deeper understanding of weather and being able to predict its future conduct have always been considered important endeavors for the growth of our society. This research paper explores the advancements in understanding and predicting nature's behavior, particularly in the context of weather forecasting, through the application of machine learning algorithms. By leveraging the power of machine learning, data mining, and data analysis techniques, significant progress has been made in this field. This study focuses on analyzing the contributions of various machine learning algorithms in predicting precipitation and temperature patterns using a 20-year dataset from a single weather station in Dhaka city. Algorithms such as Gradient Boosting, AdaBoosting, Artificial Neural Network, Stacking Random Forest, Stacking Neural Network, and Stacking KNN are evaluated and compared based on their performance metrics, including Confusion matrix measurements. The findings highlight remarkable achievements and provide valuable insights into their performances and features correlation.
Abstract:Data privacy, storage, and distribution shifts are major bottlenecks in medical image analysis. Data cannot be shared across patients, physicians, and facilities due to privacy concerns, usually requiring each patient's data to be analyzed in a discreet setting at a near real-time pace. However, one would like to take advantage of the accumulated knowledge across healthcare facilities as the computational systems analyze data of more and more patients while incorporating feedback provided by physicians to improve accuracy. Motivated by these, we propose a method for medical image segmentation that adapts to each incoming data batch (online adaptation), incorporates physician feedback through active learning, and assimilates knowledge across facilities in a federated setup. Combining an online adaptation scheme at test time with an efficient sampling strategy with budgeted annotation helps bridge the gap between the source and the incoming stream of target domain data. A federated setup allows collaborative aggregation of knowledge across distinct distributed models without needing to share the data across different models. This facilitates the improvement of performance over time by accumulating knowledge across users. Towards achieving these goals, we propose a computationally amicable, privacy-preserving image segmentation technique \textbf{DrFRODA} that uses federated learning to adapt the model in an online manner with feedback from doctors in the loop. Our experiments on publicly available datasets show that the proposed distributed active learning-based online adaptation method outperforms unsupervised online adaptation methods and shows competitive results with offline active learning-based adaptation methods.
Abstract:Tracking of plant cells in images obtained by microscope is a challenging problem due to biological phenomena such as large number of cells, non-uniform growth of different layers of the tightly packed plant cells and cell division. Moreover, images in deeper layers of the tissue being noisy and unavoidable systemic errors inherent in the imaging process further complicates the problem. In this paper, we propose a novel learning-based method that exploits the tightly packed three-dimensional cell structure of plant cells to create a three-dimensional graph in order to perform accurate cell tracking. We further propose novel algorithms for cell division detection and effective three-dimensional registration, which improve upon the state-of-the-art algorithms. We demonstrate the efficacy of our algorithm in terms of tracking accuracy and inference-time on a benchmark dataset.