Abstract:We present the Touch\'e23-ValueEval Dataset for Identifying Human Values behind Arguments. To investigate approaches for the automated detection of human values behind arguments, we collected 9324 arguments from 6 diverse sources, covering religious texts, political discussions, free-text arguments, newspaper editorials, and online democracy platforms. Each argument was annotated by 3 crowdworkers for 54 values. The Touch\'e23-ValueEval dataset extends the Webis-ArgValues-22. In comparison to the previous dataset, the effectiveness of a 1-Baseline decreases, but that of an out-of-the-box BERT model increases. Therefore, though the classification difficulty increased as per the label distribution, the larger dataset allows for training better models.
Abstract:MatrixX is a solver for Abstract Argumentation Frameworks. Offensive and defensive properties of an Argumentation Framework are notated in a matrix style. Rows and columns of this matrix are systematically reduced by the solver. This procedure is implemented through the use of hash maps in order to accelerate calculation time. MatrixX works for stable and complete semantics and was designed for the ICCMA 2021 competition.