Abstract:Sign Language Assessment (SLA) tools are useful to aid in language learning and are underdeveloped. Previous work has focused on isolated signs or comparison against a single reference video to assess Sign Languages (SL). This paper introduces a novel SLA tool designed to evaluate the comprehensibility of SL by modelling the natural distribution of human motion. We train our pipeline on data from native signers and evaluate it using SL learners. We compare our results to ratings from a human raters study and find strong correlation between human ratings and our tool. We visually demonstrate our tools ability to detect anomalous results spatio-temporally, providing actionable feedback to aid in SL learning and assessment.
Abstract:Attention is an important component of modern deep learning. However, less emphasis has been put on its inverse: ignoring distraction. Our daily lives require us to explicitly avoid giving attention to salient visual features that confound the task we are trying to accomplish. This visual prioritisation allows us to concentrate on important tasks while ignoring visual distractors. In this work, we introduce Neural Blindness, which gives an agent the ability to completely ignore objects or classes that are deemed distractors. More explicitly, we aim to render a neural network completely incapable of representing specific chosen classes in its latent space. In a very real sense, this makes the network "blind" to certain classes, allowing and agent to focus on what is important for a given task, and demonstrates how this can be used to improve localisation.
Abstract:Many processes in psychology are complex, such as dyadic interactions between two interacting partners (e.g. patient-therapist, intimate relationship partners). Nevertheless, many basic questions about interactions are difficult to investigate because dyadic processes can be within a person and between partners, they are based on multimodal aspects of behavior and unfold rapidly. Current analyses are mainly based on the behavioral coding method, whereby human coders annotate behavior based on a coding schema. But coding is labor-intensive, expensive, slow, focuses on few modalities. Current approaches in psychology use LIWC for analyzing couples' interactions. However, advances in natural language processing such as BERT could enable the development of systems to potentially automate behavioral coding, which in turn could substantially improve psychological research. In this work, we train machine learning models to automatically predict positive and negative communication behavioral codes of 368 German-speaking Swiss couples during an 8-minute conflict interaction on a fine-grained scale (10-seconds sequences) using linguistic features and paralinguistic features derived with openSMILE. Our results show that both simpler TF-IDF features as well as more complex BERT features performed better than LIWC, and that adding paralinguistic features did not improve the performance. These results suggest it might be time to consider modern alternatives to LIWC, the de facto linguistic features in psychology, for prediction tasks in couples research. This work is a further step towards the automated coding of couples' behavior which could enhance couple research and therapy, and be utilized for other dyadic interactions as well.