Abstract:Self-supervised foundation models for digital pathology encode small patches from H\&E whole slide images into latent representations used for downstream tasks. However, the invariance of these representations to patch rotation remains unexplored. This study investigates the rotational invariance of latent representations across twelve foundation models by quantifying the alignment between non-rotated and rotated patches using mutual $k$-nearest neighbours and cosine distance. Models that incorporated rotation augmentation during self-supervised training exhibited significantly greater invariance to rotations. We hypothesise that the absence of rotational inductive bias in the transformer architecture necessitates rotation augmentation during training to achieve learned invariance. Code: https://github.com/MatousE/rot-invariance-analysis.
Abstract:This paper describes the 2nd edition of the ICML Topological Deep Learning Challenge that was hosted within the ICML 2024 ELLIS Workshop on Geometry-grounded Representation Learning and Generative Modeling (GRaM). The challenge focused on the problem of representing data in different discrete topological domains in order to bridge the gap between Topological Deep Learning (TDL) and other types of structured datasets (e.g. point clouds, graphs). Specifically, participants were asked to design and implement topological liftings, i.e. mappings between different data structures and topological domains --like hypergraphs, or simplicial/cell/combinatorial complexes. The challenge received 52 submissions satisfying all the requirements. This paper introduces the main scope of the challenge, and summarizes the main results and findings.