Abstract:Scene flow estimation is a foundational task for many robotic applications, including robust dynamic object detection, automatic labeling, and sensor synchronization. Two types of approaches to the problem have evolved: 1) Supervised and 2) optimization-based methods. Supervised methods are fast during inference and achieve high-quality results, however, they are limited by the need for large amounts of labeled training data and are susceptible to domain gaps. In contrast, unsupervised test-time optimization methods do not face the problem of domain gaps but usually suffer from substantial runtime, exhibit artifacts, or fail to converge to the right solution. In this work, we mitigate several limitations of existing optimization-based methods. To this end, we 1) introduce a simple voxel grid-based model that improves over the standard MLP-based formulation in multiple dimensions and 2) introduce a new multiframe loss formulation. 3) We combine both contributions in our new method, termed Floxels. On the Argoverse 2 benchmark, Floxels is surpassed only by EulerFlow among unsupervised methods while achieving comparable performance at a fraction of the computational cost. Floxels achieves a massive speedup of more than ~60 - 140x over EulerFlow, reducing the runtime from a day to 10 minutes per sequence. Over the faster but low-quality baseline, NSFP, Floxels achieves a speedup of ~14x.
Abstract:Predicting future 3D LiDAR pointclouds is a challenging task that is useful in many applications in autonomous driving such as trajectory prediction, pose forecasting and decision making. In this work, we propose a new LiDAR prediction framework that is based on generative models namely Variational Recurrent Neural Networks (VRNNs), titled Stochastic LiDAR Prediction and Completion (SLPC). Our algorithm is able to address the limitations of previous video prediction frameworks when dealing with sparse data by spatially inpainting the depth maps in the upcoming frames. Our contributions can thus be summarized as follows: we introduce the new task of predicting and completing depth maps from spatially sparse data, we present a sparse version of VRNNs and an effective self-supervised training method that does not require any labels. Experimental results illustrate the effectiveness of our framework in comparison to the state of the art methods in video prediction.