School of Mechanical Engineering, Purdue University
Abstract:Cutting state monitoring in the milling process is crucial for improving manufacturing efficiency and tool life. Cutting sound detection using machine learning (ML) models, inspired by experienced machinists, can be employed as a cost-effective and non-intrusive monitoring method in a complex manufacturing environment. However, labeling industry data for training is costly and time-consuming. Moreover, industry data is often scarce. In this study, we propose a novel adversarial domain adaptation (DA) approach to leverage abundant lab data to learn from scarce industry data, both labeled, for training a cutting-sound detection model. Rather than adapting the features from separate domains directly, we project them first into two separate latent spaces that jointly work as the feature space for learning domain-independent representations. We also analyze two different mechanisms for adversarial learning where the discriminator works as an adversary and a critic in separate settings, enabling our model to learn expressive domain-invariant and domain-ingrained features, respectively. We collected cutting sound data from multiple sensors in different locations, prepared datasets from lab and industry domain, and evaluated our learning models on them. Experiments showed that our models outperformed the multi-layer perceptron based vanilla domain adaptation models in labeling tasks on the curated datasets, achieving near 92%, 82% and 85% accuracy respectively for three different sensors installed in industry settings.
Abstract:In this work, we present a Boundary Oriented Graph Embedding (BOGE) approach for the Graph Neural Network (GNN) to serve as a general surrogate model for regressing physical fields and solving boundary value problems. Providing shortcuts for both boundary elements and local neighbor elements, the BOGE approach can embed structured mesh elements into the graph and performs an efficient regression on large-scale triangular-mesh-based FEA results, which cannot be realized by other machine-learning-based surrogate methods. Focusing on the cantilever beam problem, our BOGE approach cannot only fit the distribution of stress fields but also regresses the topological optimization results, which show its potential of realizing abstract decision-making design process. The BOGE approach with 3-layer DeepGCN model \textcolor{blue}{achieves the regression with MSE of 0.011706 (2.41\% MAPE) for stress field prediction and 0.002735 MSE (with 1.58\% elements having error larger than 0.01) for topological optimization.} The overall concept of the BOGE approach paves the way for a general and efficient deep-learning-based FEA simulator that will benefit both industry and design-related areas.