Department of Computer Science, University of Sheffield, UK
Abstract:Although researchers and practitioners are pushing the boundaries and enhancing the capacities of NLP tools and methods, works on African languages are lagging. A lot of focus on well resourced languages such as English, Japanese, German, French, Russian, Mandarin Chinese etc. Over 97% of the world's 7000 languages, including African languages, are low resourced for NLP i.e. they have little or no data, tools, and techniques for NLP research. For instance, only 5 out of 2965, 0.19% authors of full text papers in the ACL Anthology extracted from the 5 major conferences in 2018 ACL, NAACL, EMNLP, COLING and CoNLL, are affiliated to African institutions. In this work, we discuss our effort toward building a standard machine translation benchmark dataset for Igbo, one of the 3 major Nigerian languages. Igbo is spoken by more than 50 million people globally with over 50% of the speakers are in southeastern Nigeria. Igbo is low resourced although there have been some efforts toward developing IgboNLP such as part of speech tagging and diacritic restoration
Abstract:Treebanks, such as the Penn Treebank (PTB), offer a simple approach to obtaining a broad coverage grammar: one can simply read the grammar off the parse trees in the treebank. While such a grammar is easy to obtain, a square-root rate of growth of the rule set with corpus size suggests that the derived grammar is far from complete and that much more treebanked text would be required to obtain a complete grammar, if one exists at some limit. However, we offer an alternative explanation in terms of the underspecification of structures within the treebank. This hypothesis is explored by applying an algorithm to compact the derived grammar by eliminating redundant rules -- rules whose right hand sides can be parsed by other rules. The size of the resulting compacted grammar, which is significantly less than that of the full treebank grammar, is shown to approach a limit. However, such a compacted grammar does not yield very good performance figures. A version of the compaction algorithm taking rule probabilities into account is proposed, which is argued to be more linguistically motivated. Combined with simple thresholding, this method can be used to give a 58% reduction in grammar size without significant change in parsing performance, and can produce a 69% reduction with some gain in recall, but a loss in precision.