Abstract:In this article, we present the Layered Semantic Graphs (LSG), a novel actionable hierarchical scene graph, fully integrated with a multi-modal mission planner, the FLIE: A First-Look based Inspection and Exploration planner. The novelty of this work stems from aiming to address the task of maintaining an intuitive and multi-resolution scene representation, while simultaneously offering a tractable foundation for planning and scene understanding during an ongoing inspection mission of apriori unknown targets-of-interest in an unknown environment. The proposed LSG scheme is composed of locally nested hierarchical graphs, at multiple layers of abstraction, with the abstract concepts grounded on the functionality of the integrated FLIE planner. Furthermore, LSG encapsulates real-time semantic segmentation models that offer extraction and localization of desired semantic elements within the hierarchical representation. This extends the capability of the inspection planner, which can then leverage LSG to make an informed decision to inspect a particular semantic of interest. We also emphasize the hierarchical and semantic path-planning capabilities of LSG, which can extend inspection missions by improving situational awareness for human operators in an unknown environment. The validity of the proposed scheme is proven through extensive evaluations of the proposed architecture in simulations, as well as experimental field deployments on a Boston Dynamics Spot quadruped robot in urban outdoor environment settings.
Abstract:This article studies the commonsense object affordance concept for enabling close-to-human task planning and task optimization of embodied robotic agents in urban environments. The focus of the object affordance is on reasoning how to effectively identify object's inherent utility during the task execution, which in this work is enabled through the analysis of contextual relations of sparse information of 3D scene graphs. The proposed framework develops a Correlation Information (CECI) model to learn probability distributions using a Graph Convolutional Network, allowing to extract the commonsense affordance for individual members of a semantic class. The overall framework was experimentally validated in a real-world indoor environment, showcasing the ability of the method to level with human commonsense. For a video of the article, showcasing the experimental demonstration, please refer to the following link: https://youtu.be/BDCMVx2GiQE