Abstract:Deep learning (DL) models in medical imaging face challenges in generalizability and robustness due to variations in image acquisition parameters (IAP). In this work, we introduce a novel method using conditional denoising diffusion generative models (cDDGMs) to generate counterfactual magnetic resonance (MR) images that simulate different IAP without altering patient anatomy. We demonstrate that using these counterfactual images for data augmentation can improve segmentation accuracy, particularly in out-of-distribution settings, enhancing the overall generalizability and robustness of DL models across diverse imaging conditions. Our approach shows promise in addressing domain and covariate shifts in medical imaging. The code is publicly available at https: //github.com/pedromorao/Counterfactual-MRI-Data-Augmentation
Abstract:This paper proposes a general framework for internal patch-based image restoration based on Conditional Random Fields (CRF). Unlike related models based on Markov Random Fields (MRF), our approach explicitly formulates the posterior distribution for the entire image. The potential functions are taken as proportional to the product of a likelihood and prior for each patch. By assuming identical parameters for similar patches, our approach can be classified as a model-based non-local method. For the prior term in the potential function of the CRF model, multivariate Gaussians and multivariate scale-mixture of Gaussians are considered, with the latter being a novel prior for image patches. Our results show that the proposed approach outperforms methods based on Gaussian mixture models for image denoising and state-of-the-art methods for image interpolation/inpainting.
Abstract:This paper introduces a new approach to patch-based image restoration based on external datasets and importance sampling. The Minimum Mean Squared Error (MMSE) estimate of the image patches, the computation of which requires solving a multidimensional (typically intractable) integral, is approximated using samples from an external dataset. The new method, which can be interpreted as a generalization of the external non-local means (NLM), uses self-normalized importance sampling to efficiently approximate the MMSE estimates. The use of self-normalized importance sampling endows the proposed method with great flexibility, namely regarding the statistical properties of the measurement noise. The effectiveness of the proposed method is shown in a series of experiments using both generic large-scale and class-specific external datasets.
Abstract:This paper investigates the problem of sparse signal recovery in the presence of additive impulsive noise. The heavytailed impulsive noise is well modelled with stable distributions. Since there is no explicit formulation for the probability density function of $S\alpha S$ distribution, alternative approximations like Generalized Gaussian Distribution (GGD) are used which impose $\ell_p$-norm fidelity on the residual error. In this paper, we exploit a Continuous Mixed Norm (CMN) for robust sparse recovery instead of $\ell_p$-norm. We show that in blind conditions, i.e., in case where the parameters of noise distribution are unknown, incorporating CMN can lead to near optimal recovery. We apply Alternating Direction Method of Multipliers (ADMM) for solving the problem induced by utilizing CMN for robust sparse recovery. In this approach, CMN is replaced with a surrogate function and Majorization-Minimization technique is incorporated to solve the problem. Simulation results confirm the efficiency of the proposed method compared to some recent algorithms in the literature for impulsive noise robust sparse recovery.
Abstract:In this paper, we address the problem of denoising images degraded by Poisson noise. We propose a new patch-based approach based on best linear prediction to estimate the underlying clean image. A simplified prediction formula is derived for Poisson observations, which requires the covariance matrix of the underlying clean patch. We use the assumption that similar patches in a neighborhood share the same covariance matrix, and we use off-the-shelf Poisson denoising methods in order to obtain an initial estimate of the covariance matrices. Our method can be seen as a post-processing step for Poisson denoising methods and the results show that it improves upon several Poisson denoising methods by relevant margins.
Abstract:The alternating direction method of multipliers (ADMM) is a versatile tool for solving a wide range of constrained optimization problems, with differentiable or non-differentiable objective functions. Unfortunately, its performance is highly sensitive to a penalty parameter, which makes ADMM often unreliable and hard to automate for a non-expert user. We tackle this weakness of ADMM by proposing a method to adaptively tune the penalty parameters to achieve fast convergence. The resulting adaptive ADMM (AADMM) algorithm, inspired by the successful Barzilai-Borwein spectral method for gradient descent, yields fast convergence and relative insensitivity to the initial stepsize and problem scaling.
Abstract:In this paper, we propose a new image denoising method, tailored to specific classes of images, assuming that a dataset of clean images of the same class is available. Similarly to the non-local means (NLM) algorithm, the proposed method computes a weighted average of non-local patches, which we interpret under the importance sampling framework. This viewpoint introduces flexibility regarding the adopted priors, the noise statistics, and the computation of Bayesian estimates. The importance sampling viewpoint is exploited to approximate the minimum mean squared error (MMSE) patch estimates, using the true underlying prior on image patches. The estimates thus obtained converge to the true MMSE estimates, as the number of samples approaches infinity. Experimental results provide evidence that the proposed denoiser outperforms the state-of-the-art in the specific classes of face and text images.
Abstract:In this paper, we address the problem of recovering images degraded by Poisson noise, where the image is known to belong to a specific class. In the proposed method, a dataset of clean patches from images of the class of interest is clustered using multivariate Gaussian distributions. In order to recover the noisy image, each noisy patch is assigned to one of these distributions, and the corresponding minimum mean squared error (MMSE) estimate is obtained. We propose to use a self-normalized importance sampling approach, which is a method of the Monte-Carlo family, for the both determining the most likely distribution and approximating the MMSE estimate of the clean patch. Experimental results shows that our proposed method outperforms other methods for Poisson denoising at a low SNR regime.
Abstract:Many modern computer vision and machine learning applications rely on solving difficult optimization problems that involve non-differentiable objective functions and constraints. The alternating direction method of multipliers (ADMM) is a widely used approach to solve such problems. Relaxed ADMM is a generalization of ADMM that often achieves better performance, but its efficiency depends strongly on algorithm parameters that must be chosen by an expert user. We propose an adaptive method that automatically tunes the key algorithm parameters to achieve optimal performance without user oversight. Inspired by recent work on adaptivity, the proposed adaptive relaxed ADMM (ARADMM) is derived by assuming a Barzilai-Borwein style linear gradient. A detailed convergence analysis of ARADMM is provided, and numerical results on several applications demonstrate fast practical convergence.
Abstract:In global models/priors (for example, using wavelet frames), there is a well known analysis vs synthesis dichotomy in the way signal/image priors are formulated. In patch-based image models/priors, this dichotomy is also present in the choice of how each patch is modeled. This paper shows that there is another analysis vs synthesis dichotomy, in terms of how the whole image is related to the patches, and that all existing patch-based formulations that provide a global image prior belong to the analysis category. We then propose a synthesis formulation, where the image is explicitly modeled as being synthesized by additively combining a collection of independent patches. We formally establish that these analysis and synthesis formulations are not equivalent in general and that both formulations are compatible with analysis and synthesis formulations at the patch level. Finally, we present an instance of the alternating direction method of multipliers (ADMM) that can be used to perform image denoising under the proposed synthesis formulation, showing its computational feasibility. Rather than showing the superiority of the synthesis or analysis formulations, the contributions of this paper is to establish the existence of both alternatives, thus closing the corresponding gap in the field of patch-based image processing.