Abstract:Autonomous robots depend crucially on their ability to perceive and process information from dynamic, ever-changing environments. Traditional simultaneous localization and mapping (SLAM) approaches struggle to maintain consistent scene representations because of numerous moving objects, often treating dynamic elements as outliers rather than explicitly modeling them in the scene representation. In this paper, we present a novel hierarchical 3D scene graph-based SLAM framework that addresses the challenge of modeling and estimating the pose of dynamic objects and agents. We use fiducial markers to detect dynamic entities and to extract their attributes while improving keyframe selection and implementing new capabilities for dynamic entity mapping. We maintain a hierarchical representation where dynamic objects are registered in the SLAM graph and are constrained with robot keyframes and the floor level of the building with our novel entity-keyframe constraints and intra-entity constraints. By combining semantic and geometric constraints between dynamic entities and the environment, our system jointly optimizes the SLAM graph to estimate the pose of the robot and various dynamic agents and objects while maintaining an accurate map. Experimental evaluation demonstrates that our approach achieves a 27.57% reduction in pose estimation error compared to traditional methods and enables higher-level reasoning about scene dynamics.
Abstract:Having prior knowledge of an environment boosts the localization and mapping accuracy of robots. Several approaches in the literature have utilized architectural plans in this regard. However, almost all of them overlook the deviations between actual as-built environments and as-planned architectural designs, introducing bias in the estimations. To address this issue, we present a novel localization and mapping method denoted as deviations-informed Situational Graphs or diS-Graphs that integrates prior knowledge from architectural plans even in the presence of deviations. It is based on Situational Graphs (S-Graphs) that merge geometric models of the environment with 3D scene graphs into a multi-layered jointly optimizable factor graph. Our diS-Graph extracts information from architectural plans by first modeling them as a hierarchical factor graph, which we will call an Architectural Graph (A-Graph). While the robot explores the real environment, it estimates an S-Graph from its onboard sensors. We then use a novel matching algorithm to register the A-Graph and S-Graph in the same reference, and merge both of them with an explicit model of deviations. Finally, an alternating graph optimization strategy allows simultaneous global localization and mapping, as well as deviation estimation between both the A-Graph and the S-Graph. We perform several experiments in simulated and real datasets in the presence of deviations. On average, our diS-Graphs outperforms the baselines by a margin of approximately 43% in simulated environments and by 7% in real environments, while being able to estimate deviations up to 35 cm and 15 degrees.