Abstract:Continuous mid-air hand gesture recognition based on captured hand pose streams is fundamental for human-computer interaction, particularly in AR / VR. However, many of the methods proposed to recognize heterogeneous hand gestures are tested only on the classification task, and the real-time low-latency gesture segmentation in a continuous stream is not well addressed in the literature. For this task, we propose the On-Off deep Multi-View Multi-Task paradigm (OO-dMVMT). The idea is to exploit multiple time-local views related to hand pose and movement to generate rich gesture descriptions, along with using heterogeneous tasks to achieve high accuracy. OO-dMVMT extends the classical MVMT paradigm, where all of the multiple tasks have to be active at each time, by allowing specific tasks to switch on/off depending on whether they can apply to the input. We show that OO-dMVMT defines the new SotA on continuous/online 3D skeleton-based gesture recognition in terms of gesture classification accuracy, segmentation accuracy, false positives, and decision latency while maintaining real-time operation.
Abstract:This paper presents the outcomes of a contest organized to evaluate methods for the online recognition of heterogeneous gestures from sequences of 3D hand poses. The task is the detection of gestures belonging to a dictionary of 16 classes characterized by different pose and motion features. The dataset features continuous sequences of hand tracking data where the gestures are interleaved with non-significant motions. The data have been captured using the Hololens 2 finger tracking system in a realistic use-case of mixed reality interaction. The evaluation is based not only on the detection performances but also on the latency and the false positives, making it possible to understand the feasibility of practical interaction tools based on the algorithms proposed. The outcomes of the contest's evaluation demonstrate the necessity of further research to reduce recognition errors, while the computational cost of the algorithms proposed is sufficiently low.