Rimedo Labs, Poznan, Poland
Abstract:This white paper discusses the role of large-scale AI in the telecommunications industry, with a specific focus on the potential of generative AI to revolutionize network functions and user experiences, especially in the context of 6G systems. It highlights the development and deployment of Large Telecom Models (LTMs), which are tailored AI models designed to address the complex challenges faced by modern telecom networks. The paper covers a wide range of topics, from the architecture and deployment strategies of LTMs to their applications in network management, resource allocation, and optimization. It also explores the regulatory, ethical, and standardization considerations for LTMs, offering insights into their future integration into telecom infrastructure. The goal is to provide a comprehensive roadmap for the adoption of LTMs to enhance scalability, performance, and user-centric innovation in telecom networks.
Abstract:The disaggregated, distributed and virtualised implementation of radio access networks allows for dynamic resource allocation. These attributes can be realised by virtue of the Open Radio Access Networks (O-RAN) architecture. In this article, we tackle the issue of dynamic resource allocation using a data-driven approach by employing Machine Learning (ML). We present an xApp-based implementation for the proposed ML algorithm. The core aim of this work is to optimise resource allocation and fulfil Service Level Specifications (SLS). This is accomplished by dynamically adjusting the allocation of Physical Resource Blocks (PRBs) based on traffic demand and Quality of Service (QoS) requirements. The proposed ML model effectively selects the best allocation policy for each base station and enhances the performance of scheduler functionality in O-RAN - Distributed Unit (O-DU). We show that an xApp implementing the Random Forest Classifier can yield high (85\%) performance accuracy for optimal policy selection. This can be attained using the O-RAN instance state input parameters over a short training duration.