Abstract:In Bayesian structure learning, we are interested in inferring a distribution over the directed acyclic graph (DAG) structure of Bayesian networks, from data. Defining such a distribution is very challenging, due to the combinatorially large sample space, and approximations based on MCMC are often required. Recently, a novel class of probabilistic models, called Generative Flow Networks (GFlowNets), have been introduced as a general framework for generative modeling of discrete and composite objects, such as graphs. In this work, we propose to use a GFlowNet as an alternative to MCMC for approximating the posterior distribution over the structure of Bayesian networks, given a dataset of observations. Generating a sample DAG from this approximate distribution is viewed as a sequential decision problem, where the graph is constructed one edge at a time, based on learned transition probabilities. Through evaluation on both simulated and real data, we show that our approach, called DAG-GFlowNet, provides an accurate approximation of the posterior over DAGs, and it compares favorably against other methods based on MCMC or variational inference.
Abstract:In this paper, we perform Lyapunov based analysis of the loss function to derive an a priori upper bound on the settling time of deep neural networks. While previous studies have attempted to understand deep learning using control theory framework, there is limited work on a priori finite time convergence analysis. Drawing from the advances in analysis of finite-time control of non-linear systems, we provide a priori guarantees of finite-time convergence in a deterministic control theoretic setting. We formulate the supervised learning framework as a control problem where weights of the network are control inputs and learning translates into a tracking problem. An analytical formula for finite-time upper bound on settling time is computed a priori under the assumptions of boundedness of input. Finally, we prove the robustness and sensitivity of the loss function against input perturbations.