Abstract:Understanding the emergence of prosocial behaviours among self-interested individuals is an important problem in many scientific disciplines. Various mechanisms have been proposed to explain the evolution of such behaviours, primarily seeking the conditions under which a given mechanism can induce highest levels of cooperation. As these mechanisms usually involve costs that alter individual payoffs, it is however possible that aiming for highest levels of cooperation might be detrimental for social welfare -- the later broadly defined as the total population payoff, taking into account all costs involved for inducing increased prosocial behaviours. Herein, by comparatively analysing the social welfare and cooperation levels obtained from stochastic evolutionary models of two well-established mechanisms of prosocial behaviour, namely, peer and institutional incentives, we demonstrate exactly that. We show that the objectives of maximising cooperation levels and the objectives of maximising social welfare are often misaligned. We argue for the need of adopting social welfare as the main optimisation objective when designing and implementing evolutionary mechanisms for social and collective goods.
Abstract:There is general agreement that some form of regulation is necessary both for AI creators to be incentivised to develop trustworthy systems, and for users to actually trust those systems. But there is much debate about what form these regulations should take and how they should be implemented. Most work in this area has been qualitative, and has not been able to make formal predictions. Here, we propose that evolutionary game theory can be used to quantitatively model the dilemmas faced by users, AI creators, and regulators, and provide insights into the possible effects of different regulatory regimes. We show that creating trustworthy AI and user trust requires regulators to be incentivised to regulate effectively. We demonstrate the effectiveness of two mechanisms that can achieve this. The first is where governments can recognise and reward regulators that do a good job. In that case, if the AI system is not too risky for users then some level of trustworthy development and user trust evolves. We then consider an alternative solution, where users can condition their trust decision on the effectiveness of the regulators. This leads to effective regulation, and consequently the development of trustworthy AI and user trust, provided that the cost of implementing regulations is not too high. Our findings highlight the importance of considering the effect of different regulatory regimes from an evolutionary game theoretic perspective.