Abstract:Assessing the trustworthiness of artificial intelligence systems requires knowledge from many different disciplines. These disciplines do not necessarily share concepts between them and might use words with different meanings, or even use the same words differently. Additionally, experts from different disciplines might not be aware of specialized terms readily used in other disciplines. Therefore, a core challenge of the assessment process is to identify when experts from different disciplines talk about the same problem but use different terminologies. In other words, the problem is to group problem descriptions (a.k.a. issues) with the same semantic meaning but described using slightly different terminologies. In this work, we show how we employed recent advances in natural language processing, namely sentence embeddings and semantic textual similarity, to support this identification process and to bridge communication gaps in interdisciplinary teams of experts assessing the trustworthiness of an artificial intelligence system used in healthcare.
Abstract:In recent years we have witnessed a boom in Internet of Things (IoT) device deployments, which has resulted in big data and demand for low-latency communication. This shift in the demand for infrastructure is also enabling real-time decision making using artificial intelligence for IoT applications. Artificial Intelligence of Things (AIoT) is the combination of Artificial Intelligence (AI) technologies and the IoT infrastructure to provide robust and efficient operations and decision making. Edge computing is emerging to enable AIoT applications. Edge computing enables generating insights and making decisions at or near the data source, reducing the amount of data sent to the cloud or a central repository. In this paper, we propose a framework for facilitating machine learning at the edge for AIoT applications, to enable continuous delivery, deployment, and monitoring of machine learning models at the edge (Edge MLOps). The contribution is an architecture that includes services, tools, and methods for delivering fleet analytics at scale. We present a preliminary validation of the framework by performing experiments with IoT devices on a university campus's rooms. For the machine learning experiments, we forecast multivariate time series for predicting air quality in the respective rooms by using the models deployed in respective edge devices. By these experiments, we validate the proposed fleet analytics framework for efficiency and robustness.
Abstract:Industry has always been in the pursuit of becoming more economically efficient and the current focus has been to reduce human labour using modern technologies. Even with cutting edge technologies, which range from packaging robots to AI for fault detection, there is still some ambiguity on the aims of some new systems, namely, whether they are automated or autonomous. In this paper we indicate the distinctions between automated and autonomous system as well as review the current literature and identify the core challenges for creating learning mechanisms of autonomous agents. We discuss using different types of extended realities, such as digital twins, to train reinforcement learning agents to learn specific tasks through generalization. Once generalization is achieved, we discuss how these can be used to develop self-learning agents. We then introduce self-play scenarios and how they can be used to teach self-learning agents through a supportive environment which focuses on how the agents can adapt to different real-world environments.