Abstract:Prolonged length of stay (pLoS) is a significant factor associated with the risk of adverse in-hospital events. We develop and explain a predictive model for pLos using admission-level patient and hospital administrative data. The approach includes a feature selection method by selecting non-correlated features with the highest information value. The method uses features weights of evidence to select a representative within cliques from graph theory. The prognosis study analyzed the records from 120,354 hospital admissions at the Hospital Alma Mater de Antioquia between January 2017 and March 2022. After a cleaning process the dataset was split into training (67%), test (22%), and validation (11%) cohorts. A logistic regression model was trained to predict the pLoS in two classes: less than or greater than 7 days. The performance of the model was evaluated using accuracy, precision, sensitivity, specificity, and AUC-ROC metrics. The feature selection method returns nine interpretable variables, enhancing the models' transparency. In the validation cohort, the pLoS model achieved a specificity of 0.83 (95% CI, 0.82-0.84), sensitivity of 0.64 (95% CI, 0.62-0.65), accuracy of 0.76 (95% CI, 0.76-0.77), precision of 0.67 (95% CI, 0.66-0.69), and AUC-ROC of 0.82 (95% CI, 0.81-0.83). The model exhibits strong predictive performance and offers insights into the factors that influence prolonged hospital stays. This makes it a valuable tool for hospital management and for developing future intervention studies aimed at reducing pLoS.
Abstract:In healthcare there is a pursuit for employing interpretable algorithms to assist healthcare professionals in several decision scenarios. Following the Predictive, Descriptive and Relevant (PDR) framework, the definition of interpretable machine learning as a machine-learning model that explicitly and in a simple frame determines relationships either contained in data or learned by the model that are relevant for its functioning and the categorization of models by post-hoc, acquiring interpretability after training, or model-based, being intrinsically embedded in the algorithm design. We overview a selection of eight algorithms, both post-hoc and model-based, that can be used for such purposes.




Abstract:In recent years we have witnessed a boom in Internet of Things (IoT) device deployments, which has resulted in big data and demand for low-latency communication. This shift in the demand for infrastructure is also enabling real-time decision making using artificial intelligence for IoT applications. Artificial Intelligence of Things (AIoT) is the combination of Artificial Intelligence (AI) technologies and the IoT infrastructure to provide robust and efficient operations and decision making. Edge computing is emerging to enable AIoT applications. Edge computing enables generating insights and making decisions at or near the data source, reducing the amount of data sent to the cloud or a central repository. In this paper, we propose a framework for facilitating machine learning at the edge for AIoT applications, to enable continuous delivery, deployment, and monitoring of machine learning models at the edge (Edge MLOps). The contribution is an architecture that includes services, tools, and methods for delivering fleet analytics at scale. We present a preliminary validation of the framework by performing experiments with IoT devices on a university campus's rooms. For the machine learning experiments, we forecast multivariate time series for predicting air quality in the respective rooms by using the models deployed in respective edge devices. By these experiments, we validate the proposed fleet analytics framework for efficiency and robustness.