Abstract:In the era of personalized education, the provision of comprehensible explanations for learning recommendations is of a great value to enhance the learner's understanding and engagement with the recommended learning content. Large language models (LLMs) and generative AI in general have recently opened new doors for generating human-like explanations, for and along learning recommendations. However, their precision is still far away from acceptable in a sensitive field like education. To harness the abilities of LLMs, while still ensuring a high level of precision towards the intent of the learners, this paper proposes an approach to utilize knowledge graphs (KG) as a source of factual context, for LLM prompts, reducing the risk of model hallucinations, and safeguarding against wrong or imprecise information, while maintaining an application-intended learning context. We utilize the semantic relations in the knowledge graph to offer curated knowledge about learning recommendations. With domain-experts in the loop, we design the explanation as a textual template, which is filled and completed by the LLM. Domain experts were integrated in the prompt engineering phase as part of a study, to ensure that explanations include information that is relevant to the learner. We evaluate our approach quantitatively using Rouge-N and Rouge-L measures, as well as qualitatively with experts and learners. Our results show an enhanced recall and precision of the generated explanations compared to those generated solely by the GPT model, with a greatly reduced risk of generating imprecise information in the final learning explanation.
Abstract:Modelling learning objects (LO) within their context enables the learner to advance from a basic, remembering-level, learning objective to a higher-order one, i.e., a level with an application- and analysis objective. While hierarchical data models are commonly used in digital learning platforms, using graph-based models enables representing the context of LOs in those platforms. This leads to a foundation for personalized recommendations of learning paths. In this paper, the transformation of hierarchical data models into knowledge graph (KG) models of LOs using text mining is introduced and evaluated. We utilize custom text mining pipelines to mine semantic relations between elements of an expert-curated hierarchical model. We evaluate the KG structure and relation extraction using graph quality-control metrics and the comparison of algorithmic semantic-similarities to expert-defined ones. The results show that the relations in the KG are semantically comparable to those defined by domain experts, and that the proposed KG improves representing and linking the contexts of LOs through increasing graph communities and betweenness centrality.
Abstract:Student commitment towards a learning recommendation is not separable from their understanding of the reasons it was recommended to them; and their ability to modify it based on that understanding. Among explainability approaches, chatbots offer the potential to engage the student in a conversation, similar to a discussion with a peer or a mentor. The capabilities of chatbots, however, are still not sufficient to replace a human mentor, despite the advancements of generative AI (GenAI) and large language models (LLM). Therefore, we propose an approach to utilize chatbots as mediators of the conversation and sources of limited and controlled generation of explanations, to harvest the potential of LLMs while reducing their potential risks at the same time. The proposed LLM-based chatbot supports students in understanding learning-paths recommendations. We use a knowledge graph (KG) as a human-curated source of information, to regulate the LLM's output through defining its prompt's context. A group chat approach is developed to connect students with human mentors, either on demand or in cases that exceed the chatbot's pre-defined tasks. We evaluate the chatbot with a user study, to provide a proof-of-concept and highlight the potential requirements and limitations of utilizing chatbots in conversational explainability.
Abstract:Efficient human resource management needs accurate assessment and representation of available competences as well as effective mapping of required competences for specific jobs and positions. In this regard, appropriate definition and identification of competence gaps express differences between acquired and required competences. Using a detailed quantification scheme together with a mathematical approach is a way to support accurate competence analytics, which can be applied in a wide variety of sectors and fields. This article describes the combined use of software technologies and mathematical and statistical methods for assessing and analyzing competences in human resource information systems. Based on a standard competence model, which is called a Professional, Innovative and Social competence tree, the proposed framework offers flexible tools to experts in real enterprise environments, either for evaluation of employees towards an optimal job assignment and vocational training or for recruitment processes. The system has been tested with real human resource data sets in the frame of the European project called ComProFITS.
Abstract:In todays competitive business world, being aware of customer needs and market-oriented production is a key success factor for industries. To this aim, the use of efficient analytic algorithms ensures a better understanding of customer feedback and improves the next generation of products. Accordingly, the dramatic increase in using social media in daily life provides beneficial sources for market analytics. But how traditional analytic algorithms and methods can scale up for such disparate and multi-structured data sources is the main challenge in this regard. This paper presents and discusses the technological and scientific focus of the SoMABiT as a social media analysis platform using big data technology. Sentiment analysis has been employed in order to discover knowledge from social media. The use of MapReduce and developing a distributed algorithm towards an integrated platform that can scale for any data volume and provide a social media-driven knowledge is the main novelty of the proposed concept in comparison to the state-of-the-art technologies.
Abstract:The pivotal key to the success of manufacturing enterprises is a sustainable and innovative product design and development. In collaborative design, stakeholders are heterogeneously distributed chain-like. Due to the growing volume of data and knowledge, effective management of the knowledge acquired in the product design and development is one of the key challenges facing most manufacturing enterprises. Opportunities for improving efficiency and performance of IT-based product design applications through centralization of resources such as knowledge and computation have increased in the last few years with the maturation of technologies such as SOA, virtualization, grid computing, and/or cloud computing. The main focus of this paper is the concept of ongoing research in providing the knowledge integration service for collaborative product design and development using cloud computing infrastructure. Potentials of the cloud computing to support the Knowledge integration functionalities as a Service by providing functionalities such as knowledge mapping, merging, searching, and transferring in product design procedure are described in this paper. Proposed knowledge integration services support users by giving real-time access to knowledge resources. The framework has the advantage of availability, efficiency, cost reduction, less time to result, and scalability.
Abstract:Knowledge organization, infrastructure, and knowledge-based activities are all subjects that help in the creation of business strategies for the new enterprise. In this paper, the first basics of knowledge-based systems are studied. Practical issues and challenges of Knowledge Management (KM) implementations are then illustrated. Finally, a comparison of different knowledge-based projects is presented along with abstracted information on their implementation, techniques, and results. Most of these projects are in the field of medical science. Based on our study and evaluation of different KM projects, we conclude that KM is being used in every science, industry, and business. But its importance in medical science and assisted living projects are highlighted nowadays with the most of research institutes. Most medical centers are interested in using knowledge-based services like portals and learning techniques of knowledge for their future innovations and supports.
Abstract:This paper reports the method and evaluation results of MedAusbild team for ISIC challenge task. Since early 2017, our team has worked on melanoma classification [1][6], and has employed deep learning since beginning of 2018 [7]. Deep learning helps researchers absolutely to treat and detect diseases by analyzing medical data (e.g., medical images). One of the representative models among the various deep-learning models is a convolutional neural network (CNN). Although our team has an experience with segmentation and classification of benign and malignant skin-lesions, we have participated in the task 3 of ISIC Challenge 2018 for classification of seven skin diseases, explained in this paper.