Abstract:The rapid advancement of large vision-language models (LVLMs) has driven significant progress in multimodal tasks, enabling models to interpret, reason, and generate outputs across both visual and textual domains. While excelling in generative tasks, existing LVLMs often face limitations in tasks requiring high-fidelity representation learning, such as generating image or text embeddings for retrieval. Recent work has proposed finetuning LVLMs for representational learning, but the fine-tuned model often loses its generative capabilities due to the representational learning training paradigm. To address this trade-off, we introduce CAFe, a contrastive-autoregressive fine-tuning framework that enhances LVLMs for both representation and generative tasks. By integrating a contrastive objective with autoregressive language modeling, our approach unifies these traditionally separate tasks, achieving state-of-the-art results in both multimodal retrieval and multimodal generative benchmarks, including object hallucination (OH) mitigation. CAFe establishes a novel framework that synergizes embedding and generative functionalities in a single model, setting a foundation for future multimodal models that excel in both retrieval precision and coherent output generation.
Abstract:Continual learning models for stationary data focus on learning and retaining concepts coming to them in a sequential manner. In the most generic class-incremental environment, we have to be ready to deal with classes coming one by one, without any higher-level grouping. This requirement invalidates many previously proposed methods and forces researchers to look for more flexible alternative approaches. In this work, we follow the idea of centroid-driven methods and propose end-to-end incorporation of the mixture of Gaussians model into the continual learning framework. By employing the gradient-based approach and designing losses capable of learning discriminative features while avoiding degenerate solutions, we successfully combine the mixture model with a deep feature extractor allowing for joint optimization and adjustments in the latent space. Additionally, we show that our model can effectively learn in memory-free scenarios with fixed extractors. In the conducted experiments, we empirically demonstrate the effectiveness of the proposed solutions and exhibit the competitiveness of our model when compared with state-of-the-art continual learning baselines evaluated in the context of image classification problems.