Abstract:Organisations that design and deploy artificial intelligence (AI) systems increasingly commit themselves to high-level, ethical principles. However, there still exists a gap between principles and practices in AI ethics. One major obstacle organisations face when attempting to operationalise AI Ethics is the lack of a well-defined material scope. Put differently, the question to which systems and processes AI ethics principles ought to apply remains unanswered. Of course, there exists no universally accepted definition of AI, and different systems pose different ethical challenges. Nevertheless, pragmatic problem-solving demands that things should be sorted so that their grouping will promote successful actions for some specific end. In this article, we review and compare previous attempts to classify AI systems for the purpose of implementing AI governance in practice. We find that attempts to classify AI systems found in previous literature use one of three mental model. The Switch, i.e., a binary approach according to which systems either are or are not considered AI systems depending on their characteristics. The Ladder, i.e., a risk-based approach that classifies systems according to the ethical risks they pose. And the Matrix, i.e., a multi-dimensional classification of systems that take various aspects into account, such as context, data input, and decision-model. Each of these models for classifying AI systems comes with its own set of strengths and weaknesses. By conceptualising different ways of classifying AI systems into simple mental models, we hope to provide organisations that design, deploy, or regulate AI systems with the conceptual tools needed to operationalise AI governance in practice.
Abstract:While the use of artificial intelligence (AI) systems promises to bring significant economic and social benefits, it is also coupled with ethical, legal, and technical challenges. Business leaders thus face the question of how to best reap the benefits of automation whilst managing the associated risks. As a first step, many companies have committed themselves to various sets of ethics principles aimed at guiding the design and use of AI systems. So far so good. But how can well-intentioned ethical principles be translated into effective practice? And what challenges await companies that attempt to operationalize AI governance? In this article, we address these questions by drawing on our first-hand experience of shaping and driving the roll-out of AI governance within AstraZeneca, a biopharmaceutical company. The examples we discuss highlight challenges that any organization attempting to operationalize AI governance will have to face. These include questions concerning how to define the material scope of AI governance, how to harmonize standards across decentralized organizations, and how to measure the impact of specific AI governance initiatives. By showcasing how AstraZeneca managed these operational questions, we hope to provide project managers, CIOs, AI practitioners, and data privacy officers responsible for designing and implementing AI governance frameworks within other organizations with generalizable best practices. In essence, companies seeking to operationalize AI governance are encouraged to build on existing policies and governance structures, use pragmatic and action-oriented terminology, focus on risk management in development and procurement, and empower employees through continuous education and change management.
Abstract:On the whole, the U.S. Algorithmic Accountability Act of 2022 (US AAA) is a pragmatic approach to balancing the benefits and risks of automated decision systems. Yet there is still room for improvement. This commentary highlights how the US AAA can both inform and learn from the European Artificial Intelligence Act (EU AIA).
Abstract:The advent of Generative AI, particularly through Large Language Models (LLMs) like ChatGPT and its successors, marks a paradigm shift in the AI landscape. Advanced LLMs exhibit multimodality, handling diverse data formats, thereby broadening their application scope. However, the complexity and emergent autonomy of these models introduce challenges in predictability and legal compliance. This paper delves into the legal and regulatory implications of Generative AI and LLMs in the European Union context, analyzing aspects of liability, privacy, intellectual property, and cybersecurity. It critically examines the adequacy of the existing and proposed EU legislation, including the Artificial Intelligence Act (AIA) draft, in addressing the unique challenges posed by Generative AI in general and LLMs in particular. The paper identifies potential gaps and shortcomings in the legislative framework and proposes recommendations to ensure the safe and compliant deployment of generative models, ensuring they align with the EU's evolving digital landscape and legal standards.
Abstract:The article explores the cultural shift from recording to deleting information in the digital age and its implications on privacy, intellectual property (IP), and Large Language Models like ChatGPT. It begins by defining a delete culture where information, in principle legal, is made unavailable or inaccessible because unacceptable or undesirable, especially but not only due to its potential to infringe on privacy or IP. Then it focuses on two strategies in this context: deleting, to make information unavailable; and blocking, to make it inaccessible. The article argues that both strategies have significant implications, particularly for machine learning (ML) models where information is not easily made unavailable. However, the emerging research area of Machine Unlearning (MU) is highlighted as a potential solution. MU, still in its infancy, seeks to remove specific data points from ML models, effectively making them 'forget' completely specific information. If successful, MU could provide a feasible means to manage the overabundance of information and ensure a better protection of privacy and IP. However, potential ethical risks, such as misuse, overuse, and underuse of MU, should be systematically studied to devise appropriate policies.
Abstract:The emergence of large language models (LLMs) represents a major advance in artificial intelligence (AI) research. However, the widespread use of LLMs is also coupled with significant ethical and social challenges. Previous research has pointed towards auditing as a promising governance mechanism to help ensure that AI systems are designed and deployed in ways that are ethical, legal, and technically robust. However, existing auditing procedures fail to address the governance challenges posed by LLMs, which are adaptable to a wide range of downstream tasks. To help bridge that gap, we offer three contributions in this article. First, we establish the need to develop new auditing procedures that capture the risks posed by LLMs by analysing the affordances and constraints of existing auditing procedures. Second, we outline a blueprint to audit LLMs in feasible and effective ways by drawing on best practices from IT governance and system engineering. Specifically, we propose a three-layered approach, whereby governance audits, model audits, and application audits complement and inform each other. Finally, we discuss the limitations not only of our three-layered approach but also of the prospect of auditing LLMs at all. Ultimately, this article seeks to expand the methodological toolkit available to technology providers and policymakers who wish to analyse and evaluate LLMs from technical, ethical, and legal perspectives.
Abstract:The proposed European Artificial Intelligence Act (AIA) is the first attempt to elaborate a general legal framework for AI carried out by any major global economy. As such, the AIA is likely to become a point of reference in the larger discourse on how AI systems can (and should) be regulated. In this article, we describe and discuss the two primary enforcement mechanisms proposed in the AIA: the conformity assessments that providers of high-risk AI systems are expected to conduct, and the post-market monitoring plans that providers must establish to document the performance of high-risk AI systems throughout their lifetimes. We argue that AIA can be interpreted as a proposal to establish a Europe-wide ecosystem for conducting AI auditing, albeit in other words. Our analysis offers two main contributions. First, by describing the enforcement mechanisms included in the AIA in terminology borrowed from existing literature on AI auditing, we help providers of AI systems understand how they can prove adherence to the requirements set out in the AIA in practice. Second, by examining the AIA from an auditing perspective, we seek to provide transferable lessons from previous research about how to refine further the regulatory approach outlined in the AIA. We conclude by highlighting seven aspects of the AIA where amendments (or simply clarifications) would be helpful. These include, above all, the need to translate vague concepts into verifiable criteria and to strengthen the institutional safeguards concerning conformity assessments based on internal checks.
Abstract:A series of recent developments points towards auditing as a promising mechanism to bridge the gap between principles and practice in AI ethics. Building on ongoing discussions concerning ethics-based auditing, we offer three contributions. First, we argue that ethics-based auditing can improve the quality of decision making, increase user satisfaction, unlock growth potential, enable law-making, and relieve human suffering. Second, we highlight current best practices to support the design and implementation of ethics-based auditing: To be feasible and effective, ethics-based auditing should take the form of a continuous and constructive process, approach ethical alignment from a system perspective, and be aligned with public policies and incentives for ethically desirable behaviour. Third, we identify and discuss the constraints associated with ethics-based auditing. Only by understanding and accounting for these constraints can ethics-based auditing facilitate ethical alignment of AI, while enabling society to reap the full economic and social benefits of automation.
Abstract:The potential presented by Artificial Intelligence (AI) for healthcare has long been recognised by the technical community. More recently, this potential has been recognised by policymakers, resulting in considerable public and private investment in the development of AI for healthcare across the globe. Despite this, excepting limited success stories, real-world implementation of AI systems into front-line healthcare has been limited. There are numerous reasons for this, but a main contributory factor is the lack of internationally accepted, or formalised, regulatory standards to assess AI safety and impact and effectiveness. This is a well-recognised problem with numerous ongoing research and policy projects to overcome it. Our intention here is to contribute to this problem-solving effort by seeking to set out a minimally viable framework for evaluating the safety, acceptability and efficacy of AI systems for healthcare. We do this by conducting a systematic search across Scopus, PubMed and Google Scholar to identify all the relevant literature published between January 1970 and November 2020 related to the evaluation of: output performance; efficacy; and real-world use of AI systems, and synthesising the key themes according to the stages of evaluation: pre-clinical (theoretical phase); exploratory phase; definitive phase; and post-market surveillance phase (monitoring). The result is a framework to guide AI system developers, policymakers, and regulators through a sufficient evaluation of an AI system designed for use in healthcare.
Abstract:Necessity and sufficiency are the building blocks of all successful explanations. Yet despite their importance, these notions have been conceptually underdeveloped and inconsistently applied in explainable artificial intelligence (XAI), a fast-growing research area that is so far lacking in firm theoretical foundations. Building on work in logic, probability, and causality, we establish the central role of necessity and sufficiency in XAI, unifying seemingly disparate methods in a single formal framework. We provide a sound and complete algorithm for computing explanatory factors with respect to a given context, and demonstrate its flexibility and competitive performance against state of the art alternatives on various tasks.