Abstract:Recent advances in multi-view camera-only 3D object detection either rely on an accurate reconstruction of bird's-eye-view (BEV) 3D features or on traditional 2D perspective view (PV) image features. While both have their own pros and cons, few have found a way to stitch them together in order to benefit from "the best of both worlds". To this end, we explore a duo space (i.e., BEV and PV) 3D perception framework, in conjunction with some useful duo space fusion strategies that allow effective aggregation of the two feature representations. To the best of our knowledge, our proposed method, DuoSpaceNet, is the first to leverage two distinct feature spaces and achieves the state-of-the-art 3D object detection and BEV map segmentation results on nuScenes dataset.
Abstract:Motion prediction has been an essential component of autonomous driving systems since it handles highly uncertain and complex scenarios involving moving agents of different types. In this paper, we propose a Multi-Granular TRansformer (MGTR) framework, an encoder-decoder network that exploits context features in different granularities for different kinds of traffic agents. To further enhance MGTR's capabilities, we leverage LiDAR point cloud data by incorporating LiDAR semantic features from an off-the-shelf LiDAR feature extractor. We evaluate MGTR on Waymo Open Dataset motion prediction benchmark and show that the proposed method achieved state-of-the-art performance, ranking 1st on its leaderboard (https://waymo.com/open/challenges/2023/motion-prediction/).
Abstract:We propose a novel approach for monocular 3D object detection by leveraging local perspective effects of each object. While the global perspective effect shown as size and position variations has been exploited for monocular 3D detection extensively, the local perspectives has long been overlooked. We design a local perspective module to regress a newly defined variable named keyedge-ratios as the parameterization of the local shape distortion to account for the local perspective, and derive the object depth and yaw angle from it. Theoretically, this module does not rely on the pixel-wise size or position in the image of the objects, therefore independent of the camera intrinsic parameters. By plugging this module in existing monocular 3D object detection frameworks, we incorporate the local perspective distortion with global perspective effect for monocular 3D reasoning, and we demonstrate the effectiveness and superior performance over strong baseline methods in multiple datasets.