Abstract:In this paper, we prove representation bottlenecks of a cascaded convolutional decoder network, considering the capacity of representing different frequency components of an input sample. We conduct the discrete Fourier transform on each channel of the feature map in an intermediate layer of the decoder network. Then, we introduce the rule of the forward propagation of such intermediate-layer spectrum maps, which is equivalent to the forward propagation of feature maps through a convolutional layer. Based on this, we find that each frequency component in the spectrum map is forward propagated independently with other frequency components. Furthermore, we prove two bottlenecks in representing feature spectrums. First, we prove that the convolution operation, the zero-padding operation, and a set of other settings all make a convolutional decoder network more likely to weaken high-frequency components. Second, we prove that the upsampling operation generates a feature spectrum, in which strong signals repetitively appears at certain frequencies.
Abstract:In this paper, we prove the effects of the BN operation on the back-propagation of the first and second derivatives of the loss. When we do the Taylor series expansion of the loss function, we prove that the BN operation will block the influence of the first-order term and most influence of the second-order term of the loss. We also find that such a problem is caused by the standardization phase of the BN operation. Experimental results have verified our theoretical conclusions, and we have found that the BN operation significantly affects feature representations in specific tasks, where losses of different samples share similar analytic formulas.