Abstract:Mixed-precision quantization can potentially achieve the optimal tradeoff between performance and compression rate of deep neural networks, and thus, have been widely investigated. However, it lacks a systematic method to determine the exact quantization scheme. Previous methods either examine only a small manually-designed search space or utilize a cumbersome neural architecture search to explore the vast search space. These approaches cannot lead to an optimal quantization scheme efficiently. This work proposes bit-level sparsity quantization (BSQ) to tackle the mixed-precision quantization from a new angle of inducing bit-level sparsity. We consider each bit of quantized weights as an independent trainable variable and introduce a differentiable bit-sparsity regularizer. BSQ can induce all-zero bits across a group of weight elements and realize the dynamic precision reduction, leading to a mixed-precision quantization scheme of the original model. Our method enables the exploration of the full mixed-precision space with a single gradient-based optimization process, with only one hyperparameter to tradeoff the performance and compression. BSQ achieves both higher accuracy and higher bit reduction on various model architectures on the CIFAR-10 and ImageNet datasets comparing to previous methods.
Abstract:Federated learning is a popular distributed machine learning paradigm with enhanced privacy. Its primary goal is learning a global model that offers good performance for the participants as many as possible. The technology is rapidly advancing with many unsolved challenges, among which statistical heterogeneity (i.e., non-IID) and communication efficiency are two critical ones that hinder the development of federated learning. In this work, we propose LotteryFL -- a personalized and communication-efficient federated learning framework via exploiting the Lottery Ticket hypothesis. In LotteryFL, each client learns a lottery ticket network (i.e., a subnetwork of the base model) by applying the Lottery Ticket hypothesis, and only these lottery networks will be communicated between the server and clients. Rather than learning a shared global model in classic federated learning, each client learns a personalized model via LotteryFL; the communication cost can be significantly reduced due to the compact size of lottery networks. To support the training and evaluation of our framework, we construct non-IID datasets based on MNIST, CIFAR-10 and EMNIST by taking feature distribution skew, label distribution skew and quantity skew into consideration. Experiments on these non-IID datasets demonstrate that LotteryFL significantly outperforms existing solutions in terms of personalization and communication cost.
Abstract:We present our latest experiment results of object recognition from 3D point cloud data collected through moving car.