Abstract:We study the sequence-to-sequence mapping capacity of transformers by relating them to finite transducers, and find that they can express surprisingly large classes of transductions. We do so using variants of RASP, a programming language designed to help people "think like transformers," as an intermediate representation. We extend the existing Boolean variant B-RASP to sequence-to-sequence functions and show that it computes exactly the first-order rational functions (such as string rotation). Then, we introduce two new extensions. B-RASP[pos] enables calculations on positions (such as copying the first half of a string) and contains all first-order regular functions. S-RASP adds prefix sum, which enables additional arithmetic operations (such as squaring a string) and contains all first-order polyregular functions. Finally, we show that masked average-hard attention transformers can simulate S-RASP. A corollary of our results is a new proof that transformer decoders are Turing-complete.
Abstract:As transformers have gained prominence in natural language processing, some researchers have investigated theoretically what problems they can and cannot solve, by treating problems as formal languages. Exploring questions such as this will help to compare transformers with other models, and transformer variants with one another, for various tasks. Work in this subarea has made considerable progress in recent years. Here, we undertake a comprehensive survey of this work, documenting the diverse assumptions that underlie different results and providing a unified framework for harmonizing seemingly contradictory findings.
Abstract:Transformers have emerged as a widely used neural network model for various natural language processing tasks. Previous research explored their relationship with constant-depth threshold circuits, making two assumptions: average-hard attention and logarithmic precision for internal computations relative to input length. Merrill et al. (2022) prove that average-hard attention transformers recognize languages that fall within the complexity class TC0, denoting the set of languages that can be recognized by constant-depth polynomial-size threshold circuits. Likewise, Merrill and Sabharwal (2023) show that log-precision transformers recognize languages within the class of uniform TC0. This shows that both transformer models can be simulated by constant-depth threshold circuits, with the latter being more robust due to generating a uniform circuit family. Our paper shows that the first result can be extended to yield uniform circuits as well.