Abstract:The rapid development of generative diffusion models has significantly advanced the field of style transfer. However, most current style transfer methods based on diffusion models typically involve a slow iterative optimization process, e.g., model fine-tuning and textual inversion of style concept. In this paper, we introduce FreeStyle, an innovative style transfer method built upon a pre-trained large diffusion model, requiring no further optimization. Besides, our method enables style transfer only through a text description of the desired style, eliminating the necessity of style images. Specifically, we propose a dual-stream encoder and single-stream decoder architecture, replacing the conventional U-Net in diffusion models. In the dual-stream encoder, two distinct branches take the content image and style text prompt as inputs, achieving content and style decoupling. In the decoder, we further modulate features from the dual streams based on a given content image and the corresponding style text prompt for precise style transfer. Our experimental results demonstrate high-quality synthesis and fidelity of our method across various content images and style text prompts. The code and more results are available at our project website:https://freestylefreelunch.github.io/.
Abstract:Few-shot image classification has received considerable attention for addressing the challenge of poor classification performance with limited samples in novel classes. However, numerous studies have employed sophisticated learning strategies and diversified feature extraction methods to address this issue. In this paper, we propose our method called PrototypeFormer, which aims to significantly advance traditional few-shot image classification approaches by exploring prototype relationships. Specifically, we utilize a transformer architecture to build a prototype extraction module, aiming to extract class representations that are more discriminative for few-shot classification. Additionally, during the model training process, we propose a contrastive learning-based optimization approach to optimize prototype features in few-shot learning scenarios. Despite its simplicity, the method performs remarkably well, with no bells and whistles. We have experimented with our approach on several popular few-shot image classification benchmark datasets, which shows that our method outperforms all current state-of-the-art methods. In particular, our method achieves 97.07% and 90.88% on 5-way 5-shot and 5-way 1-shot tasks of miniImageNet, which surpasses the state-of-the-art results with accuracy of 7.27% and 8.72%, respectively. The code will be released later.
Abstract:Image cartoonization has attracted significant interest in the field of image generation. However, most of the existing image cartoonization techniques require re-training models using images of cartoon style. In this paper, we present CartoonDiff, a novel training-free sampling approach which generates image cartoonization using diffusion transformer models. Specifically, we decompose the reverse process of diffusion models into the semantic generation phase and the detail generation phase. Furthermore, we implement the image cartoonization process by normalizing high-frequency signal of the noisy image in specific denoising steps. CartoonDiff doesn't require any additional reference images, complex model designs, or the tedious adjustment of multiple parameters. Extensive experimental results show the powerful ability of our CartoonDiff. The project page is available at: https://cartoondiff.github.io/