Abstract:In this work, we explore the ability of NN (Neural Networks) to serve as a tool for finding eigen-pairs of ordinary differential equations. The question we aime to address is whether, given a self-adjoint operator, we can learn what are the eigenfunctions, and their matching eigenvalues. The topic of solving the eigen-problem is widely discussed in Image Processing, as many image processing algorithms can be thought of as such operators. We suggest an alternative to numeric methods of finding eigenpairs, which may potentially be more robust and have the ability to solve more complex problems. In this work, we focus on simple problems for which the analytical solution is known. This way, we are able to make initial steps in discovering the capabilities and shortcomings of DNN (Deep Neural Networks) in the given setting.
Abstract:We propose a neural network-based algorithm for solving forward and inverse problems for partial differential equations in unsupervised fashion. The solution is approximated by a deep neural network which is the minimizer of a cost function, and satisfies the PDE, boundary conditions, and additional regularizations. The method is mesh free and can be easily applied to an arbitrary regular domain. We focus on 2D second order elliptical system with non-constant coefficients, with application to Electrical Impedance Tomography.