Abstract:Accurate and continuous blood pressure (BP) monitoring is essential to the early prevention of cardiovascular diseases. Non-invasive and cuff-less BP estimation algorithm has gained much attention in recent years. Previous studies have demonstrated that brain bio-impedance (BIOZ) is a promising technique for non-invasive intracranial pressure (ICP) monitoring. Clinically, treatment for patients with traumatic brain injuries (TBI) requires monitoring the ICP and BP of patients simultaneously. Estimating BP by brain BIOZ directly can reduce the number of sensors attached to the patients, thus improving their comfort. To address the issues, in this study, we explore the feasibility of leveraging brain BIOZ for BP estimation and propose a novel cuff-less BP estimation approach called BrainZ-BP. Two electrodes are placed on the forehead and occipital bone of the head in the anterior-posterior direction for brain BIOZ measurement. Various features including pulse transit time and morphological features of brain BIOZ are extracted and fed into four regression models for BP estimation. Results show that the mean absolute error, root mean square error, and correlation coefficient of random forest regression model are 2.17 mmHg, 3.91 mmHg, and 0.90 for systolic pressure estimation, and are 1.71 mmHg, 3.02 mmHg, and 0.89 for diastolic pressure estimation. The presented BrainZ-BP can be applied in the brain BIOZ-based ICP monitoring scenario to monitor BP simultaneously.
Abstract:Unsupervised domain adaptation aims to train a model from the labeled source domain to make predictions on the unlabeled target domain when the data distribution of the two domains is different. As a result, it needs to reduce the data distribution difference between the two domains to improve the model's generalization ability. Existing methods tend to align the two domains directly at the domain-level, or perform class-level domain alignment based on deep feature. The former ignores the relationship between the various classes in the two domains, which may cause serious negative transfer, the latter alleviates it by introducing pseudo-labels of the target domain, but it does not consider the importance of performing class-level alignment on shallow feature representations. In this paper, we develop this work on the method of class-level alignment. The proposed method reduces the difference between two domains dramaticlly by aligning multi-level features. In the case that the two domains share the label space, the class-level alignment is implemented by introducing Multi-Level Feature Contrastive Networks (MLFCNet). In practice, since the categories of samples in target domain are unavailable, we iteratively use clustering algorithm to obtain the pseudo-labels, and then minimize Multi-Level Contrastive Discrepancy (MLCD) loss to achieve more accurate class-level alignment. Experiments on three real-world benchmarks ImageCLEF-DA, Office-31 and Office-Home demonstrate that MLFCNet compares favorably against the existing state-of-the-art domain adaptation methods.
Abstract:In authentication scenarios, applications of practical speaker verification systems usually require a person to read a dynamic authentication text. Previous studies played an audio adversarial example as a digital signal to perform physical attacks, which would be easily rejected by audio replay detection modules. This work shows that by playing our crafted adversarial perturbation as a separate source when the adversary is speaking, the practical speaker verification system will misjudge the adversary as a target speaker. A two-step algorithm is proposed to optimize the universal adversarial perturbation to be text-independent and has little effect on the authentication text recognition. We also estimated room impulse response (RIR) in the algorithm which allowed the perturbation to be effective after being played over the air. In the physical experiment, we achieved targeted attacks with success rate of 100%, while the word error rate (WER) on speech recognition was only increased by 3.55%. And recorded audios could pass replay detection for the live person speaking.