Abstract:We introduce MiniMax-01 series, including MiniMax-Text-01 and MiniMax-VL-01, which are comparable to top-tier models while offering superior capabilities in processing longer contexts. The core lies in lightning attention and its efficient scaling. To maximize computational capacity, we integrate it with Mixture of Experts (MoE), creating a model with 32 experts and 456 billion total parameters, of which 45.9 billion are activated for each token. We develop an optimized parallel strategy and highly efficient computation-communication overlap techniques for MoE and lightning attention. This approach enables us to conduct efficient training and inference on models with hundreds of billions of parameters across contexts spanning millions of tokens. The context window of MiniMax-Text-01 can reach up to 1 million tokens during training and extrapolate to 4 million tokens during inference at an affordable cost. Our vision-language model, MiniMax-VL-01 is built through continued training with 512 billion vision-language tokens. Experiments on both standard and in-house benchmarks show that our models match the performance of state-of-the-art models like GPT-4o and Claude-3.5-Sonnet while offering 20-32 times longer context window. We publicly release MiniMax-01 at https://github.com/MiniMax-AI.
Abstract:Channel attention mechanisms endeavor to recalibrate channel weights to enhance representation abilities of networks. However, mainstream methods often rely solely on global average pooling as the feature squeezer, which significantly limits the overall potential of models. In this paper, we investigate the statistical moments of feature maps within a neural network. Our findings highlight the critical role of high-order moments in enhancing model capacity. Consequently, we introduce a flexible and comprehensive mechanism termed Extensive Moment Aggregation (EMA) to capture the global spatial context. Building upon this mechanism, we propose the Moment Channel Attention (MCA) framework, which efficiently incorporates multiple levels of moment-based information while minimizing additional computation costs through our Cross Moment Convolution (CMC) module. The CMC module via channel-wise convolution layer to capture multiple order moment information as well as cross channel features. The MCA block is designed to be lightweight and easily integrated into a variety of neural network architectures. Experimental results on classical image classification, object detection, and instance segmentation tasks demonstrate that our proposed method achieves state-of-the-art results, outperforming existing channel attention methods.