Abstract:In this paper, we propose a domain-decomposition-based deep learning (DL) framework, named transient-CoMLSim, for accurately modeling unsteady and nonlinear partial differential equations (PDEs). The framework consists of two key components: (a) a convolutional neural network (CNN)-based autoencoder architecture and (b) an autoregressive model composed of fully connected layers. Unlike existing state-of-the-art methods that operate on the entire computational domain, our CNN-based autoencoder computes a lower-dimensional basis for solution and condition fields represented on subdomains. Timestepping is performed entirely in the latent space, generating embeddings of the solution variables from the time history of embeddings of solution and condition variables. This approach not only reduces computational complexity but also enhances scalability, making it well-suited for large-scale simulations. Furthermore, to improve the stability of our rollouts, we employ a curriculum learning (CL) approach during the training of the autoregressive model. The domain-decomposition strategy enables scaling to out-of-distribution domain sizes while maintaining the accuracy of predictions -- a feature not easily integrated into popular DL-based approaches for physics simulations. We benchmark our model against two widely-used DL architectures, Fourier Neural Operator (FNO) and U-Net, and demonstrate that our framework outperforms them in terms of accuracy, extrapolation to unseen timesteps, and stability for a wide range of use cases.
Abstract:In recent years, Machine learning (ML) techniques developed for Natural Language Processing (NLP) have permeated into developing better computer vision algorithms. In this work, we use such NLP-inspired techniques to improve the accuracy, robustness and generalizability of ML models for simulating transient dynamics. We introduce teacher forcing and curriculum learning based training mechanics to model vortical flows and show an enhancement in accuracy for ML models, such as FNO and UNet by more than 50%.
Abstract:In this paper we show that our Machine Learning (ML) approach, CoMLSim (Composable Machine Learning Simulator), can simulate PDEs on highly-resolved grids with higher accuracy and generalization to out-of-distribution source terms and geometries than traditional ML baselines. Our unique approach combines key principles of traditional PDE solvers with local-learning and low-dimensional manifold techniques to iteratively simulate PDEs on large computational domains. The proposed approach is validated on more than 5 steady-state PDEs across different PDE conditions on highly-resolved grids and comparisons are made with the commercial solver, Ansys Fluent as well as 4 other state-of-the-art ML methods. The numerical experiments show that our approach outperforms ML baselines in terms of 1) accuracy across quantitative metrics and 2) generalization to out-of-distribution conditions as well as domain sizes. Additionally, we provide results for a large number of ablations experiments conducted to highlight components of our approach that strongly influence the results. We conclude that our local-learning and iterative-inferencing approach reduces the challenge of generalization that most ML models face.
Abstract:The increased presence of advanced sensors on the production floors has led to collection of datasets that can provide significant insights into machine health. An important and reliable indicator of machine health, vibration signal data can provide us a greater understanding of different faults occurring in mechanical systems. In this work, we analyze vibration signal data of mechanical systems with bearings by combining different signal processing techniques and coupling them machine learning techniques to classify different types of bearing faults. We also highlight the importance of using of different signal processing methods and analyze their effect on bearing fault detection. Apart from the traditional machine learning algorithms we also propose a convolutional neural network FaultNet which can effectively determine the type of bearing fault with a high degree of accuracy. The distinguishing factor of this work is the idea of channels proposed to extract more information from the signal, we have stacked the mean and median channels to raw signal to extract more useful features to classify the signals with greater accuracy