Abstract:Large Language Models (LLMs) have emerged as a dominant approach for a wide range of NLP tasks, with their access to external information further enhancing their capabilities. However, this introduces new vulnerabilities, known as prompt injection attacks, where external content embeds malicious instructions that manipulate the LLM's output. Recently, the Base64 defense has been recognized as one of the most effective methods for reducing success rate of prompt injection attacks. Despite its efficacy, this method can degrade LLM performance on certain NLP tasks. To address this challenge, we propose a novel defense mechanism: mixture of encodings, which utilizes multiple character encodings, including Base64. Extensive experimental results show that our method achieves one of the lowest attack success rates under prompt injection attacks, while maintaining high performance across all NLP tasks, outperforming existing character encoding-based defense methods. This underscores the effectiveness of our mixture of encodings strategy for both safety and task performance metrics.
Abstract:We present a framework for the automated measurement of responsible AI (RAI) metrics for large language models (LLMs) and associated products and services. Our framework for automatically measuring harms from LLMs builds on existing technical and sociotechnical expertise and leverages the capabilities of state-of-the-art LLMs, such as GPT-4. We use this framework to run through several case studies investigating how different LLMs may violate a range of RAI-related principles. The framework may be employed alongside domain-specific sociotechnical expertise to create measurements for new harm areas in the future. By implementing this framework, we aim to enable more advanced harm measurement efforts and further the responsible use of LLMs.
Abstract:Understanding the impact of data set design on model training and performance can help alleviate the costs associated with generating remote sensing and overhead labeled data. This work examined the impact of training shifted window transformers using bounding boxes and segmentation labels, where the latter are more expensive to produce. We examined classification tasks by comparing models trained with both target and backgrounds against models trained with only target pixels, extracted by segmentation labels. For object detection models, we compared performance using either label type when training. We found that the models trained on only target pixels do not show performance improvement for classification tasks, appearing to conflate background pixels in the evaluation set with target pixels. For object detection, we found that models trained with either label type showed equivalent performance across testing. We found that bounding boxes appeared to be sufficient for tasks that did not require more complex labels, such as object segmentation. Continuing work to determine consistency of this result across data types and model architectures could potentially result in substantial savings in generating remote sensing data sets for deep learning.