Abstract:The rise in the number of social media users has led to an increase in the hateful content posted online. In countries like India, where multiple languages are spoken, these abhorrent posts are from an unusual blend of code-switched languages. This hate speech is depicted with the help of images to form "Memes" which create a long-lasting impact on the human mind. In this paper, we take up the task of hate and offense detection from multimodal data, i.e. images (Memes) that contain text in code-switched languages. We firstly present a novel triply annotated Indian political Memes (IPM) dataset, which comprises memes from various Indian political events that have taken place post-independence and are classified into three distinct categories. We also propose a binary-channelled CNN cum LSTM based model to process the images using the CNN model and text using the LSTM model to get state-of-the-art results for this task.
Abstract:In multilingual societies like the Indian subcontinent, use of code-switched languages is much popular and convenient for the users. In this paper, we study offense and abuse detection in the code-switched pair of Hindi and English (i.e. Hinglish), the pair that is the most spoken. The task is made difficult due to non-fixed grammar, vocabulary, semantics and spellings of Hinglish language. We apply transfer learning and make a LSTM based model for hate speech classification. This model surpasses the performance shown by the current best models to establish itself as the state-of-the-art in the unexplored domain of Hinglish offensive text classification.We also release our model and the embeddings trained for research purposes