Abstract:It has been known to be difficult to generate adequate sports updates from a sequence of vast amounts of diverse live tweets, although the live sports viewing experience with tweets is gaining the popularity. In this paper, we focus on soccer matches and work on building a system to generate live updates for soccer matches from tweets so that users can instantly grasp a match's progress and enjoy the excitement of the match from raw tweets. Our proposed system is based on a large pre-trained language model and incorporates a mechanism to control the number of updates and a mechanism to reduce the redundancy of duplicate and similar updates.
Abstract:The semantic frame induction tasks are defined as a clustering of words into the frames that they evoke, and a clustering of their arguments according to the frame element roles that they should fill. In this paper, we address the latter task of argument clustering, which aims to acquire frame element knowledge, and propose a method that applies deep metric learning. In this method, a pre-trained language model is fine-tuned to be suitable for distinguishing frame element roles through the use of frame-annotated data, and argument clustering is performed with embeddings obtained from the fine-tuned model. Experimental results on FrameNet demonstrate that our method achieves substantially better performance than existing methods.
Abstract:Recent studies have demonstrated the usefulness of contextualized word embeddings in unsupervised semantic frame induction. However, they have also revealed that generic contextualized embeddings are not always consistent with human intuitions about semantic frames, which causes unsatisfactory performance for frame induction based on contextualized embeddings. In this paper, we address supervised semantic frame induction, which assumes the existence of frame-annotated data for a subset of predicates in a corpus and aims to build a frame induction model that leverages the annotated data. We propose a model that uses deep metric learning to fine-tune a contextualized embedding model, and we apply the fine-tuned contextualized embeddings to perform semantic frame induction. Our experiments on FrameNet show that fine-tuning with deep metric learning considerably improves the clustering evaluation scores, namely, the B-cubed F-score and Purity F-score, by about 8 points or more. We also demonstrate that our approach is effective even when the number of training instances is small.
Abstract:This paper explores a variant of automatic headline generation methods, where a generated headline is required to include a given phrase such as a company or a product name. Previous methods using Transformer-based models generate a headline including a given phrase by providing the encoder with additional information corresponding to the given phrase. However, these methods cannot always include the phrase in the generated headline. Inspired by previous RNN-based methods generating token sequences in backward and forward directions from the given phrase, we propose a simple Transformer-based method that guarantees to include the given phrase in the high-quality generated headline. We also consider a new headline generation strategy that takes advantage of the controllable generation order of Transformer. Our experiments with the Japanese News Corpus demonstrate that our methods, which are guaranteed to include the phrase in the generated headline, achieve ROUGE scores comparable to previous Transformer-based methods. We also show that our generation strategy performs better than previous strategies.
Abstract:Recent studies on semantic frame induction show that relatively high performance has been achieved by using clustering-based methods with contextualized word embeddings. However, there are two potential drawbacks to these methods: one is that they focus too much on the superficial information of the frame-evoking verb and the other is that they tend to divide the instances of the same verb into too many different frame clusters. To overcome these drawbacks, we propose a semantic frame induction method using masked word embeddings and two-step clustering. Through experiments on the English FrameNet data, we demonstrate that using the masked word embeddings is effective for avoiding too much reliance on the surface information of frame-evoking verbs and that two-step clustering can improve the number of resulting frame clusters for the instances of the same verb.
Abstract:Contextualized word representations have proven useful for various natural language processing tasks. However, it remains unclear to what extent these representations can cover hand-coded semantic information such as semantic frames, which specify the semantic role of the arguments associated with a predicate. In this paper, we focus on verbs that evoke different frames depending on the context, and we investigate how well contextualized word representations can recognize the difference of frames that the same verb evokes. We also explore which types of representation are suitable for semantic frame induction. In our experiments, we compare seven different contextualized word representations for two English frame-semantic resources, FrameNet and PropBank. We demonstrate that several contextualized word representations, especially BERT and its variants, are considerably informative for semantic frame induction. Furthermore, we examine the extent to which the contextualized representation of a verb can estimate the number of frames that the verb can evoke.