Abstract:Localizing the exact pathological regions in a given medical scan is an important imaging problem that requires a large amount of bounding box ground truth annotations to be accurately solved. However, there exist alternative, potentially weaker, forms of supervision, such as accompanying free-text reports, which are readily available. The task of performing localization with textual guidance is commonly referred to as phrase grounding. In this work, we use a publicly available Foundation Model, namely the Latent Diffusion Model, to solve this challenging task. This choice is supported by the fact that the Latent Diffusion Model, despite being generative in nature, contains mechanisms (cross-attention) that implicitly align visual and textual features, thus leading to intermediate representations that are suitable for the task at hand. In addition, we aim to perform this task in a zero-shot manner, i.e., without any further training on target data, meaning that the model's weights remain frozen. To this end, we devise strategies to select features and also refine them via post-processing without extra learnable parameters. We compare our proposed method with state-of-the-art approaches which explicitly enforce image-text alignment in a joint embedding space via contrastive learning. Results on a popular chest X-ray benchmark indicate that our method is competitive wih SOTA on different types of pathology, and even outperforms them on average in terms of two metrics (mean IoU and AUC-ROC). Source code will be released upon acceptance.
Abstract:Knowledge distillation enables fast and effective transfer of features learned from a bigger model to a smaller one. However, distillation objectives are susceptible to sub-population shifts, a common scenario in medical imaging analysis which refers to groups/domains of data that are underrepresented in the training set. For instance, training models on health data acquired from multiple scanners or hospitals can yield subpar performance for minority groups. In this paper, inspired by distributionally robust optimization (DRO) techniques, we address this shortcoming by proposing a group-aware distillation loss. During optimization, a set of weights is updated based on the per-group losses at a given iteration. This way, our method can dynamically focus on groups that have low performance during training. We empirically validate our method, GroupDistil on two benchmark datasets (natural images and cardiac MRIs) and show consistent improvement in terms of worst-group accuracy.
Abstract:Unsupervised representation learning with variational inference relies heavily on independence assumptions over latent variables. Causal representation learning (CRL), however, argues that factors of variation in a dataset are, in fact, causally related. Allowing latent variables to be correlated, as a consequence of causal relationships, is more realistic and generalisable. So far, provably identifiable methods rely on: auxiliary information, weak labels, and interventional or even counterfactual data. Inspired by causal discovery with functional causal models, we propose a fully unsupervised representation learning method that considers a data generation process with a latent additive noise model (ANM). We encourage the latent space to follow a causal ordering via loss function based on the Hessian of the latent distribution.