Abstract:Printed Electronics (PE) technology has emerged as a promising alternative to silicon-based computing. It offers attractive properties such as on-demand ultra-low-cost fabrication, mechanical flexibility, and conformality. However, PE are governed by large feature sizes, prohibiting the realization of complex printed Machine Learning (ML) classifiers. Leveraging PE's ultra-low non-recurring engineering and fabrication costs, designers can fully customize hardware to a specific ML model and dataset, significantly reducing circuit complexity. Despite significant advancements, state-of-the-art solutions achieve area efficiency at the expense of considerable accuracy loss. Our work mitigates this by designing area- and power-efficient printed ML classifiers with little to no accuracy degradation. Specifically, we introduce the first sequential Support Vector Machine (SVM) classifiers, exploiting the hardware efficiency of bespoke control and storage units and a single Multiply-Accumulate compute engine. Our SVMs yield on average 6x lower area and 4.6% higher accuracy compared to the printed state of the art.
Abstract:Printed Electronics (PE) provide a mechanically flexible and cost-effective solution for machine learning (ML) circuits, compared to silicon-based technologies. However, due to large feature sizes, printed classifiers are limited by high power, area, and energy overheads, which restricts the realization of battery-powered systems. In this work, we design sequential printed bespoke Support Vector Machine (SVM) circuits that adhere to the power constraints of existing printed batteries while minimizing energy consumption, thereby boosting battery life. Our results show 6.5x energy savings while maintaining higher accuracy compared to the state of the art.
Abstract:Deep Neural Networks (DNNs) have shown significant advantages in a wide variety of domains. However, DNNs are becoming computationally intensive and energy hungry at an exponential pace, while at the same time, there is a vast demand for running sophisticated DNN-based services on resource constrained embedded devices. In this paper, we target energy-efficient inference on embedded DNN accelerators. To that end, we propose an automated framework to compress DNNs in a hardware-aware manner by jointly employing pruning and quantization. We explore, for the first time, per-layer fine- and coarse-grained pruning, in the same DNN architecture, in addition to low bit-width mixed-precision quantization for weights and activations. Reinforcement Learning (RL) is used to explore the associated design space and identify the pruning-quantization configuration so that the energy consumption is minimized whilst the prediction accuracy loss is retained at acceptable levels. Using our novel composite RL agent we are able to extract energy-efficient solutions without requiring retraining and/or fine tuning. Our extensive experimental evaluation over widely used DNNs and the CIFAR-10/100 and ImageNet datasets demonstrates that our framework achieves $39\%$ average energy reduction for $1.7\%$ average accuracy loss and outperforms significantly the state-of-the-art approaches.
Abstract:Although Printed Electronics (PE) cannot compete with silicon-based systems in conventional evaluation metrics, e.g., integration density, area and performance, PE offers attractive properties such as on-demand ultra-low-cost fabrication, flexibility and non-toxicity. As a result, it targets application domains that are untouchable by lithography-based silicon electronics and thus have not yet seen much proliferation of computing. However, despite the attractive characteristics of PE, the large feature sizes in PE prohibit the realization of complex printed circuits, such as Machine Learning (ML) classifiers. In this work, we exploit the hardware-friendly nature of Decision Trees for machine learning classification and leverage the hardware-efficiency of the approximate design in order to generate approximate ML classifiers that are suitable for tiny, ultra-resource constrained, and battery-powered printed applications.