Abstract:Printed Electronics (PE) technology has emerged as a promising alternative to silicon-based computing. It offers attractive properties such as on-demand ultra-low-cost fabrication, mechanical flexibility, and conformality. However, PE are governed by large feature sizes, prohibiting the realization of complex printed Machine Learning (ML) classifiers. Leveraging PE's ultra-low non-recurring engineering and fabrication costs, designers can fully customize hardware to a specific ML model and dataset, significantly reducing circuit complexity. Despite significant advancements, state-of-the-art solutions achieve area efficiency at the expense of considerable accuracy loss. Our work mitigates this by designing area- and power-efficient printed ML classifiers with little to no accuracy degradation. Specifically, we introduce the first sequential Support Vector Machine (SVM) classifiers, exploiting the hardware efficiency of bespoke control and storage units and a single Multiply-Accumulate compute engine. Our SVMs yield on average 6x lower area and 4.6% higher accuracy compared to the printed state of the art.
Abstract:Printed Electronics (PE) provide a mechanically flexible and cost-effective solution for machine learning (ML) circuits, compared to silicon-based technologies. However, due to large feature sizes, printed classifiers are limited by high power, area, and energy overheads, which restricts the realization of battery-powered systems. In this work, we design sequential printed bespoke Support Vector Machine (SVM) circuits that adhere to the power constraints of existing printed batteries while minimizing energy consumption, thereby boosting battery life. Our results show 6.5x energy savings while maintaining higher accuracy compared to the state of the art.