Abstract:Recent advancements in foundation models have been successfully extended to the time series (TS) domain, facilitated by the emergence of large-scale TS datasets. However, previous efforts have primarily focused on designing model architectures to address explicit heterogeneity among datasets such as various numbers of channels, while often overlooking implicit heterogeneity such as varying dependencies between channels. In this work, we introduce the concept of partial channel dependence (PCD), which enables a more sophisticated adjustment of channel dependencies based on dataset-specific information. To achieve PCD, we propose a channel mask that captures the relationships between channels within a dataset using two key components: 1) a correlation matrix that encodes relative dependencies between channels, and 2) domain parameters that learn the absolute dependencies specific to each dataset, refining the correlation matrix. We validate the effectiveness of PCD across four tasks in TS including forecasting, classification, imputation, and anomaly detection, under diverse settings, including few-shot and zero-shot scenarios with both TS foundation models and single-task models. Code is available at https://github.com/seunghan96/CM.
Abstract:Mamba has recently emerged as a promising alternative to Transformers, offering near-linear complexity in processing sequential data. However, while channels in time series (TS) data have no specific order in general, recent studies have adopted Mamba to capture channel dependencies (CD) in TS, introducing a sequential order bias. To address this issue, we propose SOR-Mamba, a TS forecasting method that 1) incorporates a regularization strategy to minimize the discrepancy between two embedding vectors generated from data with reversed channel orders, thereby enhancing robustness to channel order, and 2) eliminates the 1D-convolution originally designed to capture local information in sequential data. Furthermore, we introduce channel correlation modeling (CCM), a pretraining task aimed at preserving correlations between channels from the data space to the latent space in order to enhance the ability to capture CD. Extensive experiments demonstrate the efficacy of the proposed method across standard and transfer learning scenarios. Code is available at https://github.com/seunghan96/SOR-Mamba.
Abstract:Advances in diffusion models for generative artificial intelligence have recently propagated to the time series (TS) domain, demonstrating state-of-the-art performance on various tasks. However, prior works on TS diffusion models often borrow the framework of existing works proposed in other domains without considering the characteristics of TS data, leading to suboptimal performance. In this work, we propose Adaptive Noise schedule for Time series diffusion models (ANT), which automatically predetermines proper noise schedules for given TS datasets based on their statistics representing non-stationarity. Our intuition is that an optimal noise schedule should satisfy the following desiderata: 1) It linearly reduces the non-stationarity of TS data so that all diffusion steps are equally meaningful, 2) the data is corrupted to the random noise at the final step, and 3) the number of steps is sufficiently large. The proposed method is practical for use in that it eliminates the necessity of finding the optimal noise schedule with a small additional cost to compute the statistics for given datasets, which can be done offline before training. We validate the effectiveness of our method across various tasks, including TS forecasting, refinement, and generation, on datasets from diverse domains. Code is available at this repository: https://github.com/seunghan96/ANT.
Abstract:Supervised contrastive representation learning has been shown to be effective in various transfer learning scenarios. However, while asymmetric non-contrastive learning (ANCL) often outperforms its contrastive learning counterpart in self-supervised representation learning, the extension of ANCL to supervised scenarios is less explored. To bridge the gap, we study ANCL for supervised representation learning, coined SupSiam and SupBYOL, leveraging labels in ANCL to achieve better representations. The proposed supervised ANCL framework improves representation learning while avoiding collapse. Our analysis reveals that providing supervision to ANCL reduces intra-class variance, and the contribution of supervision should be adjusted to achieve the best performance. Experiments demonstrate the superiority of supervised ANCL across various datasets and tasks. The code is available at: https://github.com/JH-Oh-23/Sup-ANCL.
Abstract:Open-world semi-supervised learning (OWSSL) extends conventional semi-supervised learning to open-world scenarios by taking account of novel categories in unlabeled datasets. Despite the recent advancements in OWSSL, the success often relies on the assumptions that 1) labeled and unlabeled datasets share the same balanced class prior distribution, which does not generally hold in real-world applications, and 2) unlabeled training datasets are utilized for evaluation, where such transductive inference might not adequately address challenges in the wild. In this paper, we aim to generalize OWSSL by addressing them. Our work suggests that practical OWSSL may require different training settings, evaluation methods, and learning strategies compared to those prevalent in the existing literature.
Abstract:Contrastive learning has shown to be effective to learn representations from time series in a self-supervised way. However, contrasting similar time series instances or values from adjacent timestamps within a time series leads to ignore their inherent correlations, which results in deteriorating the quality of learned representations. To address this issue, we propose SoftCLT, a simple yet effective soft contrastive learning strategy for time series. This is achieved by introducing instance-wise and temporal contrastive loss with soft assignments ranging from zero to one. Specifically, we define soft assignments for 1) instance-wise contrastive loss by the distance between time series on the data space, and 2) temporal contrastive loss by the difference of timestamps. SoftCLT is a plug-and-play method for time series contrastive learning that improves the quality of learned representations without bells and whistles. In experiments, we demonstrate that SoftCLT consistently improves the performance in various downstream tasks including classification, semi-supervised learning, transfer learning, and anomaly detection, showing state-of-the-art performance. Code is available at this repository: https://github.com/seunghan96/softclt.
Abstract:Masked time series modeling has recently gained much attention as a self-supervised representation learning strategy for time series. Inspired by masked image modeling in computer vision, recent works first patchify and partially mask out time series, and then train Transformers to capture the dependencies between patches by predicting masked patches from unmasked patches. However, we argue that capturing such patch dependencies might not be an optimal strategy for time series representation learning; rather, learning to embed patches independently results in better time series representations. Specifically, we propose to use 1) the simple patch reconstruction task, which autoencode each patch without looking at other patches, and 2) the simple patch-wise MLP that embeds each patch independently. In addition, we introduce complementary contrastive learning to hierarchically capture adjacent time series information efficiently. Our proposed method improves time series forecasting and classification performance compared to state-of-the-art Transformer-based models, while it is more efficient in terms of the number of parameters and training/inference time. Code is available at this repository: https://github.com/seunghan96/pits.
Abstract:Annotating bounding boxes for object detection is expensive, time-consuming, and error-prone. In this work, we propose a DETR based framework called ComplETR that is designed to explicitly complete missing annotations in partially annotated dense scene datasets. This reduces the need to annotate every object instance in the scene thereby reducing annotation cost. ComplETR augments object queries in DETR decoder with patch information of objects in the image. Combined with a matching loss, it can effectively find objects that are similar to the input patch and complete the missing annotations. We show that our framework outperforms the state-of-the-art methods such as Soft Sampling and Unbiased Teacher by itself, while at the same time can be used in conjunction with these methods to further improve their performance. Our framework is also agnostic to the choice of the downstream object detectors; we show performance improvement for several popular detectors such as Faster R-CNN, Cascade R-CNN, CenterNet2, and Deformable DETR on multiple dense scene datasets.
Abstract:Most existing works on few-shot object detection (FSOD) focus on a setting where both pre-training and few-shot learning datasets are from a similar domain. However, few-shot algorithms are important in multiple domains; hence evaluation needs to reflect the broad applications. We propose a Multi-dOmain Few-Shot Object Detection (MoFSOD) benchmark consisting of 10 datasets from a wide range of domains to evaluate FSOD algorithms. We comprehensively analyze the impacts of freezing layers, different architectures, and different pre-training datasets on FSOD performance. Our empirical results show several key factors that have not been explored in previous works: 1) contrary to previous belief, on a multi-domain benchmark, fine-tuning (FT) is a strong baseline for FSOD, performing on par or better than the state-of-the-art (SOTA) algorithms; 2) utilizing FT as the baseline allows us to explore multiple architectures, and we found them to have a significant impact on down-stream few-shot tasks, even with similar pre-training performances; 3) by decoupling pre-training and few-shot learning, MoFSOD allows us to explore the impact of different pre-training datasets, and the right choice can boost the performance of the down-stream tasks significantly. Based on these findings, we list possible avenues of investigation for improving FSOD performance and propose two simple modifications to existing algorithms that lead to SOTA performance on the MoFSOD benchmark. The code is available at https://github.com/amazon-research/few-shot-object-detection-benchmark.
Abstract:Recent unsupervised representation learning methods have shown to be effective in a range of vision tasks by learning representations invariant to data augmentations such as random cropping and color jittering. However, such invariance could be harmful to downstream tasks if they rely on the characteristics of the data augmentations, e.g., location- or color-sensitive. This is not an issue just for unsupervised learning; we found that this occurs even in supervised learning because it also learns to predict the same label for all augmented samples of an instance. To avoid such failures and obtain more generalizable representations, we suggest to optimize an auxiliary self-supervised loss, coined AugSelf, that learns the difference of augmentation parameters (e.g., cropping positions, color adjustment intensities) between two randomly augmented samples. Our intuition is that AugSelf encourages to preserve augmentation-aware information in learned representations, which could be beneficial for their transferability. Furthermore, AugSelf can easily be incorporated into recent state-of-the-art representation learning methods with a negligible additional training cost. Extensive experiments demonstrate that our simple idea consistently improves the transferability of representations learned by supervised and unsupervised methods in various transfer learning scenarios. The code is available at https://github.com/hankook/AugSelf.