Abstract:Supervised contrastive learning (SupCL) has emerged as a prominent approach in representation learning, leveraging both supervised and self-supervised losses. However, achieving an optimal balance between these losses is challenging; failing to do so can lead to class collapse, reducing discrimination among individual embeddings in the same class. In this paper, we present theoretically grounded guidelines for SupCL to prevent class collapse in learned representations. Specifically, we introduce the Simplex-to-Simplex Embedding Model (SSEM), a theoretical framework that models various embedding structures, including all embeddings that minimize the supervised contrastive loss. Through SSEM, we analyze how hyperparameters affect learned representations, offering practical guidelines for hyperparameter selection to mitigate the risk of class collapse. Our theoretical findings are supported by empirical results across synthetic and real-world datasets.
Abstract:Mixup is a widely adopted data augmentation technique known for enhancing the generalization of machine learning models by interpolating between data points. Despite its success and popularity, limited attention has been given to understanding the statistical properties of the synthetic data it generates. In this paper, we delve into the theoretical underpinnings of mixup, specifically its effects on the statistical structure of synthesized data. We demonstrate that while mixup improves model performance, it can distort key statistical properties such as variance, potentially leading to unintended consequences in data synthesis. To address this, we propose a novel mixup method that incorporates a generalized and flexible weighting scheme, better preserving the original data's structure. Through theoretical developments, we provide conditions under which our proposed method maintains the (co)variance and distributional properties of the original dataset. Numerical experiments confirm that the new approach not only preserves the statistical characteristics of the original data but also sustains model performance across repeated synthesis, alleviating concerns of model collapse identified in previous research.
Abstract:Contrastive learning has emerged as a prominent branch of self-supervised learning for several years. Especially, CLIP, which applies contrastive learning to large sets of captioned images, has garnered significant attention. Recently, SigLIP, a variant of CLIP, has been proposed, which uses the sigmoid loss instead of the standard InfoNCE loss. SigLIP achieves the performance comparable to CLIP in a more efficient manner by eliminating the need for a global view. However, theoretical understanding of using the sigmoid loss in contrastive learning is underexplored. In this paper, we provide a theoretical analysis of using the sigmoid loss in contrastive learning, in the perspective of the geometric structure of learned embeddings. First, we propose the double-Constant Embedding Model (CCEM), a framework for parameterizing various well-known embedding structures by a single variable. Interestingly, the proposed CCEM is proven to contain the optimal embedding with respect to the sigmoid loss. Second, we mathematically analyze the optimal embedding minimizing the sigmoid loss for contrastive learning. The optimal embedding ranges from simplex equiangular-tight-frame to antipodal structure, depending on the temperature parameter used in the sigmoid loss. Third, our experimental results on synthetic datasets coincide with the theoretical results on the optimal embedding structures.