Abstract:Supervised contrastive learning (SupCL) has emerged as a prominent approach in representation learning, leveraging both supervised and self-supervised losses. However, achieving an optimal balance between these losses is challenging; failing to do so can lead to class collapse, reducing discrimination among individual embeddings in the same class. In this paper, we present theoretically grounded guidelines for SupCL to prevent class collapse in learned representations. Specifically, we introduce the Simplex-to-Simplex Embedding Model (SSEM), a theoretical framework that models various embedding structures, including all embeddings that minimize the supervised contrastive loss. Through SSEM, we analyze how hyperparameters affect learned representations, offering practical guidelines for hyperparameter selection to mitigate the risk of class collapse. Our theoretical findings are supported by empirical results across synthetic and real-world datasets.
Abstract:Supervised contrastive representation learning has been shown to be effective in various transfer learning scenarios. However, while asymmetric non-contrastive learning (ANCL) often outperforms its contrastive learning counterpart in self-supervised representation learning, the extension of ANCL to supervised scenarios is less explored. To bridge the gap, we study ANCL for supervised representation learning, coined SupSiam and SupBYOL, leveraging labels in ANCL to achieve better representations. The proposed supervised ANCL framework improves representation learning while avoiding collapse. Our analysis reveals that providing supervision to ANCL reduces intra-class variance, and the contribution of supervision should be adjusted to achieve the best performance. Experiments demonstrate the superiority of supervised ANCL across various datasets and tasks. The code is available at: https://github.com/JH-Oh-23/Sup-ANCL.