Abstract:Large Vision Language Models (LVLMs) have demonstrated remarkable capabilities in understanding and describing visual content, achieving state-of-the-art performance across various vision-language tasks. However, these models frequently exhibit hallucination behavior, where they generate descriptions containing objects or details absent in the input image. Our work investigates this phenomenon by analyzing attention patterns across transformer layers and heads, revealing that hallucinations often stem from progressive degradation of visual grounding in deeper layers. We propose a novel attention modification approach that combines selective token emphasis and head-specific modulation to maintain visual grounding throughout the generation process. Our method introduces two key components: (1) a dual-stream token selection mechanism that identifies and prioritizes both locally informative and spatially significant visual tokens, and (2) an attention head-specific modulation strategy that differentially amplifies visual information processing based on measured visual sensitivity of individual attention heads. Through extensive experimentation on the MSCOCO dataset, we demonstrate that our approach reduces hallucination rates by up to 62.3\% compared to baseline models while maintaining comparable task performance. Our analysis reveals that selectively modulating tokens across attention heads with varying levels of visual sensitivity can significantly improve visual grounding without requiring model retraining.
Abstract:Large language models (LLMs) are revolutionizing various domains with their remarkable natural language processing (NLP) abilities. However, deploying LLMs in resource-constrained edge computing and embedded systems presents significant challenges. Another challenge lies in delivering medical assistance in remote areas with limited healthcare facilities and infrastructure. To address this, we introduce MedAide, an on-premise healthcare chatbot. It leverages tiny-LLMs integrated with LangChain, providing efficient edge-based preliminary medical diagnostics and support. MedAide employs model optimizations for minimal memory footprint and latency on embedded edge devices without server infrastructure. The training process is optimized using low-rank adaptation (LoRA). Additionally, the model is trained on diverse medical datasets, employing reinforcement learning from human feedback (RLHF) to enhance its domain-specific capabilities. The system is implemented on various consumer GPUs and Nvidia Jetson development board. MedAide achieves 77\% accuracy in medical consultations and scores 56 in USMLE benchmark, enabling an energy-efficient healthcare assistance platform that alleviates privacy concerns due to edge-based deployment, thereby empowering the community.