Abstract:Real-time target speaker extraction (TSE) is intended to extract the desired speaker's voice from the observed mixture of multiple speakers in a streaming manner. Implementing real-time TSE is challenging as the computational complexity must be reduced to provide real-time operation. This work introduces to Conv-TasNet-based TSE a new architecture based on state space modeling (SSM) that has been shown to model long-term dependency effectively. Owing to SSM, fewer dilated convolutional layers are required to capture temporal dependency in Conv-TasNet, resulting in the reduction of model complexity. We also enlarge the window length and shift of the convolutional (TasNet) frontend encoder to reduce the computational cost further; the performance decline is compensated by over-parameterization of the frontend encoder. The proposed method reduces the real-time factor by 78% from the conventional causal Conv-TasNet-based TSE while matching its performance.
Abstract:Self-supervised learning (SSL) is the latest breakthrough in speech processing, especially for label-scarce downstream tasks by leveraging massive unlabeled audio data. The noise robustness of the SSL is one of the important challenges to expanding its application. We can use speech enhancement (SE) to tackle this issue. However, the mismatch between the SE model and SSL models potentially limits its effect. In this work, we propose a new SE training criterion that minimizes the distance between clean and enhanced signals in the feature representation of the SSL model to alleviate the mismatch. We expect that the loss in the SSL domain could guide SE training to preserve or enhance various levels of characteristics of the speech signals that may be required for high-level downstream tasks. Experiments show that our proposal improves the performance of an SE and SSL pipeline on five downstream tasks with noisy input while maintaining the SE performance.