Abstract:In reinforcement learning, agents collect state information and rewards through environmental interactions, essential for policy refinement. This process is notably time-consuming, especially in complex robotic simulations and real-world applications. Traditional algorithms usually re-engage with the environment after processing a single batch of samples, thereby failing to fully capitalize on historical data. However, frequently observed states, with reliable value estimates, require minimal updates; in contrast, rare observed states necessitate more intensive updates for achieving accurate value estimations. To address uneven sample utilization, we propose Novelty-guided Sample Reuse (NSR). NSR provides extra updates for infrequent, novel states and skips additional updates for frequent states, maximizing sample use before interacting with the environment again. Our experiments show that NSR improves the convergence rate and success rate of algorithms without significantly increasing time consumption. Our code is publicly available at https://github.com/ppksigs/NSR-DDPG-HER.
Abstract:Recent studies show that deep learning models achieve good performance on medical imaging tasks such as diagnosis prediction. Among the models, multimodality has been an emerging trend, integrating different forms of data such as chest X-ray (CXR) images and electronic medical records (EMRs). However, most existing methods incorporate them in a model-free manner, which lacks theoretical support and ignores the intrinsic relations between different data sources. To address this problem, we propose a knowledge-driven and data-driven framework for lung disease diagnosis. By incorporating domain knowledge, machine learning models can reduce the dependence on labeled data and improve interpretability. We formulate diagnosis rules according to authoritative clinical medicine guidelines and learn the weights of rules from text data. Finally, a multimodal fusion consisting of text and image data is designed to infer the marginal probability of lung disease. We conduct experiments on a real-world dataset collected from a hospital. The results show that the proposed method outperforms the state-of-the-art multimodal baselines in terms of accuracy and interpretability.