Abstract:This paper proposes a process that uses two cameras to obtain three-dimensional (3D) information of a target object for human tracking. Results of human detection and tracking from two cameras are integrated to obtain the 3D information. OpenPose is used for human detection. In the case of a general processing a stereo camera, a range image of the entire scene is acquired as precisely as possible, and then the range image is processed. However, there are problems such as incorrect matching and computational cost for the calibration process. A new stereo vision framework is proposed to cope with the problems. The effectiveness of the proposed framework and the method is verified through target-tracking experiments.
Abstract:This paper describes a novel SLAM (simultaneous localization and mapping) scheme based on scan matching in an environment including various physical properties.
Abstract:This paper aims at constructing a light-weight object detector that inputs a depth and a color image from a stereo camera. Specifically, by extending the network architecture of YOLOv3 to 3D in the middle, it is possible to output in the depth direction. In addition, Intersection over Uninon (IoU) in 3D space is introduced to confirm the accuracy of region extraction results. In the field of deep learning, object detectors that use distance information as input are actively studied for utilizing automated driving. However, the conventional detector has a large network structure, and the real-time property is impaired. The effectiveness of the detector constructed as described above is verified using datasets. As a result of this experiment, the proposed model is able to output 3D bounding boxes and detect people whose part of the body is hidden. Further, the processing speed of the model is 44.35 fps.
Abstract:This paper proposes an anomaly detection method for the prevention of industrial accidents using machine learning technology.