Abstract:In recent years, the advancement of AI technologies has accelerated the development of smart factories. In particular, the automatic monitoring of product assembly progress is crucial for improving operational efficiency, minimizing the cost of discarded parts, and maximizing factory productivity. However, in cases where assembly tasks are performed manually over multiple days, implementing smart factory systems remains a challenge. Previous work has proposed Anomaly Triplet-Net, which estimates assembly progress by applying deep metric learning to the visual features of products. Nevertheless, when visual changes between consecutive tasks are subtle, misclassification often occurs. To address this issue, this paper proposes a robust system for estimating assembly progress, even in cases of occlusion or minimal visual change, using a small-scale dataset. Our method leverages a Quadruplet Loss-based learning approach for anomaly images and introduces a custom data loader that strategically selects training samples to enhance estimation accuracy. We evaluated our approach using a image datasets: captured during desktop PC assembly. The proposed Anomaly Quadruplet-Net outperformed existing methods on the dataset. Specifically, it improved the estimation accuracy by 1.3% and reduced misclassification between adjacent tasks by 1.9% in the desktop PC dataset and demonstrating the effectiveness of the proposed method.
Abstract:In this paper, a progress recognition method consider occlusion using deep metric learning is proposed to visualize the product assembly process in a factory. First, the target assembly product is detected from images acquired from a fixed-point camera installed in the factory using a deep learning-based object detection method. Next, the detection area is cropped from the image. Finally, by using a classification method based on deep metric learning on the cropped image, the progress of the product assembly work is estimated as a rough progress step. As a specific progress estimation model, we propose an Anomaly Triplet-Net that adds anomaly samples to Triplet Loss for progress estimation considering occlusion. In experiments, an 82.9% success rate is achieved for the progress estimation method using Anomaly Triplet-Net. We also experimented with the practicality of the sequence of detection, cropping, and progression estimation, and confirmed the effectiveness of the overall system.