Abstract:Relation detection is a core component for Knowledge Base Question Answering (KBQA). In this paper, we propose a KB relation detection model via multi-view matching which utilizes more useful information extracted from question and KB. The matching inside each view is through multiple perspectives to compare two input texts thoroughly. All these components are designed in an end-to-end trainable neural network model. Experiments on SimpleQuestions and WebQSP yield state-of-the-art results.
Abstract:Relation detection is a core component for many NLP applications including Knowledge Base Question Answering (KBQA). In this paper, we propose a hierarchical recurrent neural network enhanced by residual learning that detects KB relations given an input question. Our method uses deep residual bidirectional LSTMs to compare questions and relation names via different hierarchies of abstraction. Additionally, we propose a simple KBQA system that integrates entity linking and our proposed relation detector to enable one enhance another. Experimental results evidence that our approach achieves not only outstanding relation detection performance, but more importantly, it helps our KBQA system to achieve state-of-the-art accuracy for both single-relation (SimpleQuestions) and multi-relation (WebQSP) QA benchmarks.