Abstract:Japan faces many challenges related to its aging society, including increasing rates of cognitive decline in the population and a shortage of caregivers. Efforts have begun to explore solutions using artificial intelligence (AI), especially socially embodied intelligent agents and robots that can communicate with people. Yet, there has been little research on the compatibility of these agents with older adults in various everyday situations. To this end, we conducted a user study to evaluate a robot that functions as a facilitator for a group conversation protocol designed to prevent cognitive decline. We modified the robot to use backchannelling, a natural human way of speaking, to increase receptiveness of the robot and enjoyment of the group conversation experience. We conducted a cross-generational study with young adults and older adults. Qualitative analyses indicated that younger adults perceived the backchannelling version of the robot as kinder, more trustworthy, and more acceptable than the non-backchannelling robot. Finally, we found that the robot's backchannelling elicited nonverbal backchanneling in older participants.
Abstract:People read human characteristics into the design of social robots, a visual process with socio-cultural implications. One factor may be nationality, a complex social characteristic that is linked to ethnicity, culture, and other factors of identity that can be embedded in the visual design of robots. Guided by social identity theory (SIT), we explored the notion of "mukokuseki," a visual design characteristic defined by the absence of visual cues to national and ethnic identity in Japanese cultural exports. In a two-phase categorization study (n=212), American (n=110) and Japanese (n=92) participants rated a random selection of nine robot stimuli from America and Japan, plus multinational Pepper. We found evidence of made-in and two kinds of mukokuseki effects. We offer suggestions for the visual design of mukokuseki robots that may interact with people from diverse backgrounds. Our findings have implications for robots and social identity, the viability of robotic exports, and the use of robots internationally.
Abstract:ChatGPT is a conversational agent built on a large language model. Trained on a significant portion of human output, ChatGPT can mimic people to a degree. As such, we need to consider what social identities ChatGPT simulates (or can be designed to simulate). In this study, we explored the case of identity simulation through Japanese first-person pronouns, which are tightly connected to social identities in intersectional ways, i.e., intersectional pronouns. We conducted a controlled online experiment where people from two regions in Japan (Kanto and Kinki) witnessed interactions with ChatGPT using ten sets of first-person pronouns. We discovered that pronouns alone can evoke perceptions of social identities in ChatGPT at the intersections of gender, age, region, and formality, with caveats. This work highlights the importance of pronoun use for social identity simulation, provides a language-based methodology for culturally-sensitive persona development, and advances the potential of intersectional identities in intelligent agents.
Abstract:Voice is a natural mode of expression offered by modern computer-based systems. Qualitative perspectives on voice-based user experiences (voice UX) offer rich descriptions of complex interactions that numbers alone cannot fully represent. We conducted a systematic review of the literature on qualitative approaches to voice UX, capturing the nature of this body of work in a systematic map and offering a qualitative synthesis of findings. We highlight the benefits of qualitative methods for voice UX research, identify opportunities for increasing rigour in methods and outcomes, and distill patterns of experience across a diversity of devices and modes of qualitative praxis.
Abstract:Voice assistants (VAs) are becoming a feature of our everyday life. Yet, the user experience (UX) is often limited, leading to underuse, disengagement, and abandonment. Co-designing interactions for VAs with potential end-users can be useful. Crowdsourcing this process online and anonymously may add value. However, most work has been done in the English-speaking West on dialogue data sets. We must be sensitive to cultural differences in language, social interactions, and attitudes towards technology. Our aims were to explore the value of co-designing VAs in the non-Western context of Japan and demonstrate the necessity of cultural sensitivity. We conducted an online elicitation study (N = 135) where Americans (n = 64) and Japanese people (n = 71) imagined dialogues (N = 282) and activities (N = 73) with future VAs. We discuss the implications for coimagining interactions with future VAs, offer design guidelines for the Japanese and English-speaking US contexts, and suggest opportunities for cultural plurality in VA design and scholarship.
Abstract:The illusion of consensus occurs when people believe there is consensus across multiple sources, but the sources are the same and thus there is no "true" consensus. We explore this phenomenon in the context of an AI-based intelligent agent designed to augment metacognition on social media. Misinformation, especially on platforms like Twitter, is a global problem for which there is currently no good solution. As an explainable AI (XAI) system, the agent provides explanations for its decisions on the misinformed nature of social media content. In this late-breaking study, we explored the roles of trust (attitude) and reliance (behaviour) as key elements of XAI user experience (UX) and whether these influenced the illusion of consensus. Findings show no effect of trust, but an effect of reliance on consensus-based explanations. This work may guide the design of anti-misinformation systems that use XAI, especially the user-centred design of explanations.
Abstract:Communication between people is characterized by a broad range of nonverbal cues. Transferring these cues into the design of robots and other artificial agents that interact with people may foster more natural, inviting, and accessible experiences. In this position paper, we offer a series of definitive nonverbal codes for human-robot interaction (HRI) that address the five human sensory systems (visual, auditory, haptic, olfactory, gustatory) drawn from the field of communication studies. We discuss how these codes can be translated into design patterns for HRI using a curated sample of the communication studies and HRI literatures. As nonverbal codes are an essential mode in human communication, we argue that integrating robotic nonverbal codes in HRI will afford robots a feeling of "aliveness" or "social agency" that would otherwise be missing. We end with suggestions for research directions to stimulate work on nonverbal communication within the field of HRI and improve communication between human and robots.
Abstract:As virtual assistants continue to be taken up globally, there is an ever-greater need for these speech-based systems to communicate naturally in a variety of languages. Crowdsourcing initiatives have focused on multilingual translation of big, open data sets for use in natural language processing (NLP). Yet, language translation is often not one-to-one, and biases can trickle in. In this late-breaking work, we focus on the case of pronouns translated between English and Japanese in the crowdsourced Tatoeba database. We found that masculine pronoun biases were present overall, even though plurality in language was accounted for in other ways. Importantly, we detected biases in the translation process that reflect nuanced reactions to the presence of feminine, neutral, and/or non-binary pronouns. We raise the issue of translation bias for pronouns and offer a practical solution to embed plurality in NLP data sets.
Abstract:The Japanese notion of "kawaii" or expressions of cuteness, vulnerability, and/or charm is a global cultural export. Work has explored kawaii-ness as a design feature and factor of user experience in the visual appearance, nonverbal behaviour, and sound of robots and virtual characters. In this initial work, we consider whether voices can be kawaii by exploring the vocal qualities of voice assistant speech, i.e., kawaii vocalics. Drawing from an age-inclusive model of kawaii, we ran a user perceptions study on the kawaii-ness of younger- and older-sounding Japanese computer voices. We found that kawaii-ness intersected with perceptions of gender and age, i.e., gender ambiguous and girlish, as well as VA features, i.e., fluency and artificiality. We propose an initial model of kawaii vocalics to be validated through the identification and study of vocal qualities, cognitive appraisals, behavioural responses, and affective reports.
Abstract:Critical scholarship has elevated the problem of gender bias in data sets used to train virtual assistants (VAs). Most work has focused on explicit biases in language, especially against women, girls, femme-identifying people, and genderqueer folk; implicit associations through word embeddings; and limited models of gender and masculinities, especially toxic masculinities, conflation of sex and gender, and a sex/gender binary framing of the masculine as diametric to the feminine. Yet, we must also interrogate how masculinities are "coded" into language and the assumption of "male" as the linguistic default: implicit masculine biases. To this end, we examined two natural language processing (NLP) data sets. We found that when gendered language was present, so were gender biases and especially masculine biases. Moreover, these biases related in nuanced ways to the NLP context. We offer a new dictionary called AVA that covers ambiguous associations between gendered language and the language of VAs.