Abstract:Voice is a natural mode of expression offered by modern computer-based systems. Qualitative perspectives on voice-based user experiences (voice UX) offer rich descriptions of complex interactions that numbers alone cannot fully represent. We conducted a systematic review of the literature on qualitative approaches to voice UX, capturing the nature of this body of work in a systematic map and offering a qualitative synthesis of findings. We highlight the benefits of qualitative methods for voice UX research, identify opportunities for increasing rigour in methods and outcomes, and distill patterns of experience across a diversity of devices and modes of qualitative praxis.
Abstract:Intelligent agents have great potential as facilitators of group conversation among older adults. However, little is known about how to design agents for this purpose and user group, especially in terms of agent embodiment. To this end, we conducted a mixed methods study of older adults' reactions to voice and body in a group conversation facilitation agent. Two agent forms with the same underlying artificial intelligence (AI) and voice system were compared: a humanoid robot and a voice assistant. One preliminary study (total n=24) and one experimental study comparing voice and body morphologies (n=36) were conducted with older adults and an experienced human facilitator. Findings revealed that the artificiality of the agent, regardless of its form, was beneficial for the socially uncomfortable task of conversation facilitation. Even so, talkative personality types had a poorer experience with the "bodied" robot version. Design implications and supplementary reactions, especially to agent voice, are also discussed.
Abstract:Artificial intelligences (AI) are increasingly being embodied and embedded in the world to carry out tasks and support decision-making with and for people. Robots, recommender systems, voice assistants, virtual humans - do these disparate types of embodied AI have something in common? Here we show how they can manifest as "socially embodied AI." We define this as the state that embodied AI "circumstantially" take on within interactive contexts when perceived as both social and agentic by people. We offer a working ontology that describes how embodied AI can dynamically transition into socially embodied AI. We propose an ontological heuristic for describing the threshold: the Tepper line. We reinforce our theoretical work with expert insights from a card sort workshop. We end with two case studies to illustrate the dynamic and contextual nature of this heuristic.